Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:20:08.213Z Has data issue: false hasContentIssue false

Changes of electronic properties of AlGaN/GaN HEMTs by surface treatment

Published online by Cambridge University Press:  18 December 2014

W. Pletschen
Affiliation:
Fraunhofer-Institute of Applied Solid State Physics, D-79108 Freiburg, Germany,
St. Linkohr
Affiliation:
Fraunhofer-Institute of Applied Solid State Physics, D-79108 Freiburg, Germany,
L. Kirste
Affiliation:
Fraunhofer-Institute of Applied Solid State Physics, D-79108 Freiburg, Germany,
V. Cimalla
Affiliation:
Fraunhofer-Institute of Applied Solid State Physics, D-79108 Freiburg, Germany,
S. Müller
Affiliation:
Fraunhofer-Institute of Applied Solid State Physics, D-79108 Freiburg, Germany,
M. Himmerlich
Affiliation:
University of Technology, D-98693 Ilmenau, Germany,
S. Krischok
Affiliation:
University of Technology, D-98693 Ilmenau, Germany,
O. Ambacher
Affiliation:
Fraunhofer-Institute of Applied Solid State Physics, D-79108 Freiburg, Germany,
Get access

Abstract

The impact of device processing and plasma treatments at different plasma conditions on the electronic transport properties of GaN/AlGaN/GaN heterostructures was investigated as well as annealing in nitrogen atmosphere at 425°C. The electrical properties are characterized by Hall-effect measurements while electron spectroscopy and X-ray measurements are used to investigate changes in the surface chemical composition and in the layer structure, respectively. It is demonstrated that these layer structures are quite sensitive even to non-plasma based processing. Furthermore, treatments in SF6 and N2 based plasmas strongly affect the 2DEG properties of the heterostructure due to altering of the surface barrier accompanied by thinning of the layer structure. Depending on the layer structure and the plasma conditions used the electronic properties may be recovered by annealing.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambacher, O., Foutz, B., Smart, J., Shealey, J.R., Weimann, N.G., Chu, K., Murphy, M., Sierakowski, A.J., Schaff, W.J., Eastman, L.F., Dimitrov, R., Mitchell, A., and Stutzmann, M., Jour. Appl. Phys. 87, 334 (2000).CrossRefGoogle Scholar
Ibbetson, J.P., Fini, P.T., Ness, K.D., DenBaars, S.P., Speck, J.S., and Mishra, U.K., Appl. Phys. Lett. 77, 250 (2000).CrossRefGoogle Scholar
Linkohr, S., Pletschen, W., Polyakov, V., Himmerlich, M., Lorenz, P., Krischok, S., Kirste, L., Müller, S., Ambacher, O., and Cimalla, V., Phys. Stat. Sol. C9, 1096 (2012).Google Scholar
Linkohr, S., Pletschen, W., Kirste, L., Himmerlich, M., Lorenz, P., Krischok, S., Polyakov, V., Müller, S., Ambacher, O., and Cimalla, V., Phys. Stat. Sol. C9, 938 (2012).Google Scholar
Cai, Y., Zhou, Y., Chen, K.J., and Lau, K.M., IEEE Electron Dev. Lett. 26, 435 (2005).Google Scholar
Yu, E. T., Dang, X.Z., Yu, L.S., Qiao, D., Asbeck, P.M., Lau, S.S., Sullivan, G.J., Boutros, K.S., and Redwing, J.M., Appl. Phys. Lett. 73, 13, 18801882 (1998).CrossRefGoogle Scholar
Goldhahn, R., Winzer, A.T., Dadgar, A., Krost, A., Weidemann, O., and Eickhoff, M., Phys. Stat. Sol. A204, 447 (2007).CrossRefGoogle Scholar
Köhler, K., Müller, S., Aidam, R., Waltereit, P., Pletschen, W., Kirste, L., Menner, H.P., Bronner, W., Leuther, A., Quay, R., Mikulla, M., Ambacher, O., Granzner, R., Schwierz, F., Buchheim, C., and Goldhahn, R., Jour. Appl. Phys. 107, 053711 (2010).CrossRefGoogle Scholar
Köhler, K., Maier, M., Kirste, L., Wiegert, J., and Menner, H.P., Phy. Stat. Sol. C6, 5937(2009).Google Scholar