Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T08:54:33.939Z Has data issue: false hasContentIssue false

Changes in Structure and Composition of Silicon Oxide Thin Films Induced by Ultraviolet Illumination

Published online by Cambridge University Press:  10 February 2011

E. G. Parada
Affiliation:
Departamento de Física Aplicada, Universidade de Vigo, Campus Lagoas-Vigo, Galicia, Spain
P. González
Affiliation:
Departamento de Física Aplicada, Universidade de Vigo, Campus Lagoas-Vigo, Galicia, Spain
B. León
Affiliation:
Departamento de Física Aplicada, Universidade de Vigo, Campus Lagoas-Vigo, Galicia, Spain
M. Pérez-Amor
Affiliation:
Departamento de Física Aplicada, Universidade de Vigo, Campus Lagoas-Vigo, Galicia, Spain
M. F. DA Silva
Affiliation:
Departamento de Física, Instituto Tecnológico e Nuclear, Sacavém, Portugal
J. C. Soares
Affiliation:
Centro de Física Nuclear, Universidade de Lisboa, Lisboa, Portugal
A. Fernández
Affiliation:
Instituto de Ciencia de Materiales/CSIC Sevilla, Spain
A. R. González-Elipe
Affiliation:
Instituto de Ciencia de Materiales/CSIC Sevilla, Spain
Get access

Abstract

The transformation of silicon oxide thin films at room-temperature by UV-photons provided by a Xe2* incoherent excimer lamp (λ = 172 nm, Δλ = 14 nm) was studied. Films were produced at low-temperature (T = 260 °C) by ArF laser-induced CVD (LCVD) in parallel configuration from a silane/nitrous oxide/argon gas mixture. The silicon oxide films were irradiated in several consecutive steps to follow-up the modifications with the illumination time. Rutherford backscattering (RBS), infrared (IR) and X-ray photoelectron (XPS) spectroscopies, ellipsometry, and elastic recoil detection analysis (ERDA) were used to characterize the effects of the irradiation on the structure, composition, density, and hydrogen content.

Under the UV illumination the as-deposited film evolves from a suboxide film (SiO1.6) to a stoichiometric silicon dioxide (SiO2), and its originally strained structure changes towards a relaxed tetrahedral configuration. The UV irradiation is able to anneal at room temperature the silicon oxide films breaking the Si-H bonds and incorporating new SiO and hydroxyl groups in a relaxed network. The hydrogen does not effuse out, but remains in the film as molecular hydrogen and/or forming silanol or water groups.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Revesz, A.G., J. Electrochem. Soc. 126, 122 (1979).Google Scholar
2. Oldham, T.R., McLean, F.B., Boesch, H.E., McGarrity, J.M., Semicond. Sci. Technol. 4, 989 (1989).Google Scholar
3. Busch, M.C., Slaoui, A., Siffert, P., Dooryhee, E., Toulemonde, M., J. Appl. Phys. 71, 2596 (1992).Google Scholar
4. Shelby, J.E., J. Non-Cryst. Sol. 179, 138 (1994).Google Scholar
5. Parada, E.G., González, P., Serra, J., León, B., Pérez-Amor, M., Flicstein, J., Devine, R.A.B., Appl. Surf. Sci. 86, 294 (1995).Google Scholar
6. González., P., García, E., Pou, J., Fernández, D., Serra, J., León, B., Pérez-Amor, M., Thin Solid Films 421, 348 (1993).Google Scholar
7. Redondas, X., González, P., Chiussi, S., Parada, E.G., Pou, J., León, B., Pérez-Amor, M., Appl. Surf.Sci. (1996) in press.Google Scholar
8. Kogelschatz, U., Appl. Surf. Sci. 54, 410 (1992).Google Scholar
9. González, P., Fernández, D., Pou, I., García, E., Serra, J., León, B., Pérez-Amor, M., Thin Solid Films 218, 172 (1992).Google Scholar
10. Parada, E.G., González, P., Serra, J., León, B., Pérez-Amor, M., Silva, M.F. da, Wolters, H., Soares, J.C., J. Non-Cryst. Sol. 187, 75 (1995).Google Scholar
11. Galeener, F.L., Phys.Rev. B 19, 4292 (1979).Google Scholar
12. Parada, E.G., González, P., Pou, J., Serra, J., Fernández, D., León, B., Pérez-Amor, M., J. Vac. Sci. Technol. A 14, 436 (1996).Google Scholar
13. Adams, A.C., Solid State Technol. 26, 135 (1983).Google Scholar
14. Brodsky, M.H., Cardona, M., Cuomo, J.J., Phys. Rev. B 16, 3556 (1977).Google Scholar
15. Wagner, C.D., Gale, L.H., Raymond, R.H., Anal. Chem. 51, 466 (1979).Google Scholar
16. Alfonsetti, R., Lozzi, L., Passacantando, M., Picozzi, P., Santucci, S., Thin Solid Films 213, 158 (1992).Google Scholar
17. Baulch, D.L., Cox, R.A., Crutzen, P.J., Hampson, R.F., Kerr, J.A., Troe, J., Watson, R.T., J. Phys. Chem. Ref. Data 11,327 (1982).Google Scholar
18. Griscom, D.L., J. Appl. Phys. 58, 2524 (1985).Google Scholar
19. Devine, R.A.B., Jap. J. Appl. Phys. 31, 4411 (1992).Google Scholar