Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T02:40:16.076Z Has data issue: false hasContentIssue false

Challenges Confronting High Temperature Superconducting Materials: From Nanoscale Theories to Exascale Energy Applications

Published online by Cambridge University Press:  11 September 2014

Paul Michael Grant*
Affiliation:
W2AGZ Technologies San Jose, CA 95123, U.S.A.
*
*PDF copies of this paper, including color figures and imbedded hyperlinks to selected references, can be obtained by e-mailing the author at [email protected], subject Spring MRS 2014 .
Get access

Abstract

We review the present state of the understanding and application of high temperature superconductor materials ranging from attempts to clarify pairing mechanisms on the energy scale of a few milli-electron-volts to their use to embody terra-kwh continental wide deployment within the electricity enterprise. Examples include the use of density functional theory to study the relative roles of spin-fluctuation and/or lattice vibration induced Cooper pairing to modelling the incorporation of long distance HTSC transmission cables within the same natural gas pipeline rights-of-way infrastructure now emerging worldwide.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bednorz, J.G. and Mueller, K.A., Z. Phys. B. (Condensed Matter) 64, 189 (1986). Link 10.1007/BF01303701CrossRefGoogle Scholar
Meng, R.L., et al. ., Physica C 282-287, 2553 (1997). Link 10.1016/S0921-4534(97)01372-5CrossRefGoogle Scholar
Eckroad, S., Superconducting Power Equipment, EPRI Report 1024190 (2012). Link Google Scholar
Gionnazzi, P., et al. ., J. Phys.: Condens. Matter 21, 395502 (2009). Link Google Scholar
U.S. Energy Information Agency. Link Google Scholar
Grant, P.M., “The Great Quantum Conundrum,” Nature 476, 37 (2011). Link 10.1038/476037aCrossRefGoogle ScholarPubMed
Eliashberg, G.M., Soviet Physics JETP 11, 696 (1960). Link Google Scholar
Franck, et al. ., Phys. Rev. Letters 71, 283 (1993). Link 10.1103/PhysRevLett.71.283CrossRefGoogle Scholar
Ledbetter, H., Physica C 235-240, 1325 (1994). Link 10.1016/0921-4534(94)91887-2CrossRefGoogle Scholar
Macfarlane, R.M., et al. ., Solid State Commun. 63, 831 (1987). Link 10.1016/0038-1098(87)90895-7CrossRefGoogle Scholar
Grant, P.M., J. Physics: CS 129, 012042 (2008). Link Google Scholar
Bednorz-Mueller Nobel Lecture, 8 December 1987. Link Google Scholar
Siemons, W., et al. ., Phys. Rev. B79, 195122 (2009). Link 10.1103/PhysRevB.79.195122CrossRefGoogle Scholar
Grant, P.M., IEEE Trans. Appl. Supercon. 7, 112 (1997). Link 10.1109/77.614432CrossRefGoogle Scholar
Grant, P.M., Mat. Res. Soc. Symp. Proc. 689, 3 (2002). Link Google Scholar
Grant, P.M., The Industrial Physicist 8, 22 (2002). Link Google Scholar
Grant, P.M., et al. ., Scientific American 295, No. 1, p.76 (July, 2006). Link 10.1038/scientificamerican0706-76CrossRefGoogle Scholar
Grant, P.M., IEEE Trans. Appl. Supercon. 15, 1810 (2005). Link More technical detail and figures in color and be found in the manuscript for this paper. Link 10.1109/TASC.2005.849298CrossRefGoogle Scholar
Grant, P.M. and Eckroad, S., Functional Requirements of a Hydrogen-Electric SuperGrid, EPRI Report 1013204 (2006). Link Google Scholar
Vysotsky, V.S., et al. ., IEEE Trans. Appl. Supercon. 23, 5400906 (2013). Link 10.1109/TASC.2013.2238574CrossRefGoogle Scholar
Grant, P.M., AIP Conf. Proc. 823, 291 (2006). Link 10.1063/1.2202428CrossRefGoogle Scholar
Grant, P.M., Proc. ICBC 22-ICMC 2008, 543 (2009). Link Google Scholar
Grant, P.M., Proc. ICEC-ICMC 2010 Wroclaw (to appear). Link Google Scholar
Thomas, Chervyakov and Marian, , Some socio-economic aspects of long-distance energy transport by superconducting power lines with a focus on MgB2 , (IASS 2012). Link Google Scholar
Mackenzie Valley Gas Pipeline Project. Link Google Scholar
Combined Cycle Gas Turbine – Wikipedia. Link Google Scholar
Grant, P.M., Extreme Energy Makeover, Physics World, pp. 3739 (October 2009). Link Google Scholar
Grant, P.M., Fraternal Twins, Smart Grid News, 16 April 2013. Link Google Scholar
Keystone Pipeline – Wikipedia. Link Google Scholar
Little, W.A., Phys. Rev. 134, A1416 (1963). Link 10.1103/PhysRev.134.A1416CrossRefGoogle Scholar
Little, W.A., Sci. Am. 212, No. 2, 21 (1965). Link 10.1038/scientificamerican0265-21CrossRefGoogle Scholar
Davis, D., Gutfreund, H. and Little, W.A., Phys. Rev. B13, 4766 (1976). Link 10.1103/PhysRevB.13.4766CrossRefGoogle Scholar
Little, W.A. and Gutfreund, H., Phys. Rev. B4, 817 (1971). Link 10.1103/PhysRevB.4.817CrossRefGoogle Scholar
Grant, P.M., Physics Today, 17 (May 1998). Link Google Scholar
Grant, P.M., Superconducting Fluctuations in One-Dimensional Quasi-Periodic Metallic Chains, BAPS 55, No. 2 (2010) (to be published). Link Google Scholar
Foner, S. and Orlando, T.P., MIT Technology Review, p. 36, (Feb-Mar 1988). Link Google Scholar
Chauncey’s Page at www.w2agz.com. Link Google Scholar