Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T01:19:14.179Z Has data issue: false hasContentIssue false

The Challenge for Large-scale Vapor-phase Growths of Not-catalyzed ZnO Nanostructures: Purity vs. Yield

Published online by Cambridge University Press:  31 January 2011

Davide Calestani
Affiliation:
[email protected], IMEM-CNR, Parma, Italy
Ming Zheng Zha
Affiliation:
[email protected], IMEM-CNR, Parma, Italy
Roberto Mosca
Affiliation:
[email protected], IMEM-CNR, Parma, Italy
Laura Lazzarini
Affiliation:
[email protected], IMEM-CNR, Parma, Italy
Giancarlo Salviati
Affiliation:
[email protected], IMEM-CNR, Parma, Italy
Andrea Zappettini
Affiliation:
[email protected], IMEM-CNR, Parma, Italy
Lucio Zanotti
Affiliation:
[email protected], IMEM-CNR, Parma, Italy
Get access

Abstract

Large-scale growth capability is a general requirement for any reliable and cost-effective device application. Catalyst-free vapor-phase growth techniques generally let obtain high purity materials, but their application in large-scale growths of zinc oxide (ZnO) nanostructures is not trivial, because the lack of catalysts makes the control of these process rather difficult. Three different optimizations of the basic vapor phase growth have been studied and performed to obtain selected and reproducible growths of three different ZnO nanostructures with improved yield, i.e. nanotetrapods, nanowires and nanorods. No precursor or catalyst has been used in order to reduce contamination sources as more as possible.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lu, J. G. Chang, P. Fan, Z. Materials Science and Engineering R 52, 4991 (2006).Google Scholar
2 Schmidt-Mende, L., MacManus-Driscoll, J. L., Materials Today 10, 4048 (2007).Google Scholar
3 Wang, Z. L. J. Phys.: Condens. Matter 16, R829–R858 (2004).Google Scholar
4 Klingshirn, C. Phys. Stat. Sol. B 244, 30273073 (2007).Google Scholar
5 Özgür, Ü., Alivov, Ya. I. Liu, C. Teke, A. Reshchikov, M. A. Doõan, S., Avrutin, V. Cho, S.-J., Morkoç, H., J. Appl. Phys. 98, 041301 (2005).Google Scholar
6 Arnold, M. A. PAvouris, h. Pan, Z. W. Wang, Z. L. J. Phys. Chem. B 107, 659663 (2003).Google Scholar
7 Banerjee, D. Rybczynski, J, Huang, J. Y. Wang, D. Z. Kempa, K. Ren, Z. F. Appl. Phys. AMater. 80, 749752 (2005).Google Scholar
8 Zhu, Z. M. Chen, T. L. Gu, Y. Warren, J. Osgood, R. M. Chemistry of Materials 17, 42274234 (2005).Google Scholar
9 Kim, S. W. Fujita, S. Applied Physics Letters 86, 153119 (2005).Google Scholar
10 Gao, P. X. Ding, Y. Wang, I. L. Nano Letters 3, 13151320 (2003).Google Scholar
11 Viswanatha, R. Santra, P. K. Dasgupta, C. Sarma, D. D. Physical Review Letters 98, 255501 (2007).Google Scholar
12 Pal, U. Santiago, P. J. Phys. Chem. B 109, 1531715321 (2005).Google Scholar
13 Elen, K. Rul, H. Van den, Hardy, A. Bael, M. K. Van, D'Haen, J., Peeters, R. Franco, D. Mullens, J. Nanotechnology 20, 055608 (2009).Google Scholar
14 Mahalingam, T. Lee, K. M. Park, K. H. Lee, S. Ahn, Y. Park, J. Y. Koh, K. H. Nanotechnology 18, 035606 (2007).Google Scholar
15 Zhang, H. X. Feng, J. Wang, J. Zhang, M. L. Materials Letters 61, 52025205 (2007).Google Scholar
16 Jang, J. M. Kim, S. D. Choi, H. M. Kim, J. Y. Jung, W. G. Mater. Chem. Phys. 113, 389394 (2009).Google Scholar
17 Greene, L. E. Yuhas, B. D. Law, M. Zitoun, D. Yang, P. D. Inorganic Chemistry 45, 75357543 (2006).Google Scholar