No CrossRef data available.
Published online by Cambridge University Press: 19 October 2011
Multipurpose transport, aging, and disposal casks are needed for the management of spent nuclear fuel (SNF). Self-shielded cermet casks can outperform current SNF casks because of the superior properties of cermets, which consist of encapsulated hard ceramic particulates dispersed in a continuous ductile metal matrix to produce a strong high-integrity, high-thermal-conductivity cask.
A multiyear, multinational development and testing program has been developing cermet SNF casks made of steel, depleted uranium dioxide, and other materials. Because cermets are the traditional material of construction for armor, cermet casks can provide superior protection against assault. For disposal, cermet waste packages (WPs) with appropriate metals and ceramics can buffer the local geochemical environment to (1) slow degradation of SNF, (2) reduce water flow though the degraded WP, (3) sorb neptunium and other radionuclides that determine the ultimate radiation dose to the public from the repository, and (4) contribute to long-term nuclear criticality control. Finally, new cermet cask fabrication methods have been partly developed to manufacture the casks with the appropriate properties. The results of this work are summarized with references to the detailed reports.