Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:33:39.219Z Has data issue: false hasContentIssue false

Ceramic Thin Films on Organic Self-Assembled Monolayers: Synthesis and the Mechanism of Formation

Published online by Cambridge University Press:  10 February 2011

U. Sampathkumaran
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106–7204, USA., [email protected]
S. Supothina
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106–7204, USA., [email protected]
R. Wang
Affiliation:
School of Dentistry, Case Western Reserve University, Cleveland, OH 44106–7204, USA., [email protected]
M. R. De Guire
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106–7204, USA., [email protected]
Get access

Abstract

In recent years, several research groups have pursued biomimetic or bio-inspired techniques for the synthesis of ceramic thin films from aqueous solutions at low temperatures. The substrates range from inorganic materials (metals, glass, single-crystal silicon) without special surface preparation, to functionalized organic surfaces such as self-assembled organic monolayers (SAMs). Our results on the deposition of tin (IV) oxide (SnO2, cassiterite) and hydroxyapatite (Ca10(PO4)6(OH)2) thin films on SAMs will be reviewed. The former system forms films via assembly of nano-scale particles on the substrate, while the latter system appears to form films via heterogeneous nucleation. In both cases, the role of the substrate in film formation is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Berman, A., Hanson, J., Leiserowitz, L., Koetzle, T. F., Weiner, S., and Addadi, L., Science 259 776 (1993).Google Scholar
2. Kuhn-Spearing, L., Kessler, H., Spearing, S. M., Ballarini, R., and Heuer, A. H., J. Mater. Sci. 31, 6583 (1996).Google Scholar
3. Calvert, P. and Mann, S., J. Mater. Sci. 23 3801 (1988).Google Scholar
4. Bianconi, P. A., Lin, J., and Strzelecki, A. R., Nature 349 315 (1991).Google Scholar
5. Ziolo, R. F., Giannelis, E. P., Weinstein, B. A., O'Horo, M. P., Ganguly, B. N., Mehrotra, V., Russell, M. W., and Huffman, D. R., Science 257, 219 (1992).Google Scholar
6. Colvin, V. L., Goldstein, A. N., and Alivisatos, A. P., J. Am. Chem. Soc. 114, 5521 (1992).Google Scholar
7. Stein, A., Keller, S. W., and Mallouk, T. E., Science 259, 1558 (1993).Google Scholar
8. Bunker, B. C., Rieke, P. C., Tarasevich, B. J., Campbell, A. A., Fryxell, G. E., Graff, G. L., Song, L., Liu, J., Virden, J. W., and McVay, G. L., Science 264, 48 (1994).Google Scholar
9. Rieke, P. C., Tarasevich, B. J., Wood, L. L., Engelhard, M. H., Baer, D. R., Fryxell, G. E., John, C. M., Laken, D. A., and Jaehnig, M. C., Langmuir 10, 619 (1994).Google Scholar
10. Calvert, P., Mat. Sci. Eng. C1 69 (1994).Google Scholar
11. Feng, S. and Bein, T., Nature 368, 834 (1994); Science 265, 1839 (1994).Google Scholar
12. Tanahashi, M., Yao, T., Kokubo, T., Minoda, M., Miyamoto, T., Nakamura, T., and Yamamuro, T., J. Am. Ceram. Soc. 77, 2805 (1994).Google Scholar
13. Shin, H., Collins, R. J., De, M. R. Guire, Heuer, A. H., and Sukenik, C. N., J. Mater. Res. 10 (3), 692 (1995).Google Scholar
14. Aksay, I. A., Trau, M., Manne, S., Honma, I., Yao, N., Zhou, L., Fenter, P., Eisenberger, P. M., and Gruner, S. M., Science 273, 892 (1996).Google Scholar
15. Tarasevich, B. J., Rieke, P. C., and Liu, J., Chem. Mater. 8, 292 (1996).Google Scholar
16. Agarwal, M., De, M. R. Guire, and Heuer, A. H., J. Am. Ceram. Soc. 80, 2967 (1997).Google Scholar
17. Liu, Y., Wang, A., and Claus, R., J. Phys. Chem. B 101, 1385 (1997).Google Scholar
18. Meldrum, F. C., Flath, J., and Knoll, W., Langmuir 13, 2033 (1997).Google Scholar
19. Baskaran, S., Song, L., Liu, J., Chen, Y. L., and Graff, G. L., J. Am. Ceram. Soc. 81, 401 (1998).Google Scholar
20. Niesen, T. P., De, M. R. Guire, Bill, J., Aldinger, F., Ruihle, M., Fischer, A., Jentoft, F. C., and Schldgl, R., J. Mater. Res. 14 (6), 2464 (1999).Google Scholar
21 Mindt, W., J. Electrochem. Soc. 117 (5), 615 (1970); 118 (1), 93 (1971).Google Scholar
22. Raviendra, D. and Sharma, J. K., J. Phys. Chem. Solids 46 (8), 945 (1985); J. Appl. Phys. 58 [2], 838 (1985).Google Scholar
23. Ristov, M., Sinadinovski, G. J., and Grozdanov, I., Thin Solid Films 123, 63 (1985).Google Scholar
24. Nagayama, H., Honda, H., and Kawahara, H., J. Electrochem. Soc. 135, 2013 (1988).Google Scholar
25. Varkey, A. J. and Fort, A. F., Solar Energy Mater. Solar Cells 29, 253–9 (1993); 31, 277–82 (1993); Thin Solid Films 235, 47–50 (1993); Int. J. Mater. Prod. Technol. 10 [1–2], 94–7 (1995).Google Scholar
26. Jiménez-González, A. E. and Nair, P. K., Semicond. Sci. Technol. 10, 1277 (1995).Google Scholar
27. O'Brien, P., Saeed, T., and Knowles, J., J. Mater. Chem. 6, 1135 (1996).Google Scholar
28. Deki, S., Aoi, Y., Asaoka, Y., Kajinami, A., and Mizuhata, M., J. Mater. Chem. 7, 733 (1997).Google Scholar
29. Tsukuma, K., Akiyama, T., and Imai, H., J. Non-Cryst. Solids 210, 481997).Google Scholar
30. Izaki, M. and Omi, T., J. Electrochem. Soc. 144 (1), L3 (1997); M. Izaki, Electrochem. Solid-State Lett. 1 (5), 215 (1998).Google Scholar
31. Milner, C. J. and Watts, B. N., Nature 123, 322 (1949).Google Scholar
32. Kitaev, G. A., Uritskaya, A. A., and Mokhrushin, S. G., Zh. Fiz. Khimii 39, 2082 (1965) [Russ. J. Phys. Chem. 39 (8), 1101 (1965)].Google Scholar
33. Nicolau, Y. F., Appl. Surf. Sci. 22/23, 1061 (1985).Google Scholar
34. Grozdanov, I., Semicond. Sci. Technol. 9, 1234 (1994).Google Scholar
35. Savadogo, O., Sol. Energy Mater. Sol. Cells 52 361 (1998).Google Scholar
36. Nair, P. K., Nair, M. T. S., Garcia, V. M., Arenas, O. L., Peña, Y., Castillo, A., Ayala, I. T., Gomezdaza, O., Sánchez, A., Campos, J., Hu, H., Suárez, R., and Rincán, M. E., Sol. Energy Mater. Sol. Cells 52, 313 (1998).Google Scholar
37. Niesen, T. P. and Guire, M. R. De, to be submitted to Journal of Electroceramics.Google Scholar
38. Supothina, S., Guire, M. R. De, Heuer, A. H., Niesen, T. P., Bill, J., and Aldinger, F., Organic/ Inorganic Hybrid Materials II, edited by Klein, L. C., Francis, L., Guire, M. R. De, and Mark, J. E. (Mater. Res. Soc. Proc. 576, Warrendale, PA, 1999) pp. 203–8.Google Scholar
39. Supothina, S. and Guire, M. R. De, Thin Solid Films (accepted for publication).Google Scholar
40. Shin, H., Agarwal, M., Guire, M. R. De, and Heuer, A. H., Acta Mater. 46, p. 801 (1998).Google Scholar
41. Supothina, S., Ph.D. Thesis, Case Western Reserve University, 1999.Google Scholar
42. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., and Yamamuro, T., J. Biomed. Mat. Res. 24, 721 (1990).Google Scholar
43. Kokubo, T., Thermochimica Acta 280/281, 479 (1996).Google Scholar
44. Raemdonck, W. Van, Ducheyne, P., and Meester, P. De, "Calcium phosphate ceramics," in Metal Ceramic Biomaterials. Vol II: Strength and surface, edited by Ducheyne, P. and Hastings, G.W. (CRC Press, Boca Raton, FL, 1984) pp. 143166.Google Scholar
45. JCPDS file number 09–0452. Joint Committee on Powder Diffraction Standards, Swarthmore, PA.Google Scholar
46. Hench, L. L, Splinter, R. J., Allen, W. C., and Greenlee, T. K. Jr., J. Biomed. Mater. Res. Symp. 2, 117 (1972).Google Scholar
47. Hench, L. L., Bioactive ceramics, "Bioceramics: Materials characteristics versus in-vivo behaviour," edited by Ducheyne, P. and Lemons, J., Annals of New York Academy of Sciences, (New York) 243, 54 (1988).Google Scholar
48. Hench, L. L., J. Am. Ceram. Soc. 74, 1487 (1991).Google Scholar
49. Kokubo, T., Ito, S., Sakka, S. and Yamamuro, T., J. Mater. Sci. 21, 536 (1986).Google Scholar
50. Ohtsuki, C., Kokubo, T. and Yamamuro, T., J. Non-Crystalline Solids, 143, 84 (1992).Google Scholar
51. Andersson, Ö. H., Liu, G., Karlsson, K. H., Niemi, L., Miettinen, J. and Juhanoja, J., J. Mater. Sci. Mater. Med. 1, 219 (1990).Google Scholar
52. Andersson, Ö. H and Karlsson, K. H., J. Non-Crystalline Solids 129, 145 (1991).Google Scholar
53. Hench, L. L. and Wilson, J. W., Science (Washington, D.C.) 226, 630 (1984).Google Scholar
54. Kim, C. Y., Clark, A. E. and Hench, L. L., J. Non-Crystalline Solids 113, 195 (1989).Google Scholar
55. Menczel, J., Posner, A. S. and Harper, R. A., Isr. J. Med. Sci. 1, 251 (1965).Google Scholar
56. Roufosse, A. H., Landis, W. J., Sabine, W. K., and Glimcher, M. J., J. Ultrastructure Res. 68, 235 (1979).Google Scholar
57. Bonar, L. C., Roufosse, A. H., Sabine, W. K., Grynpas, M. A. and Glimcher, M. J., Calcif. Tissue Int. 35, 202 (1983).Google Scholar