Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:36:43.998Z Has data issue: false hasContentIssue false

Ceramic Foam Catalyst Supports Preparation and Properties

Published online by Cambridge University Press:  15 February 2011

James T. Richardson
Affiliation:
Department of Chemical Engineering, University of Houston, Houston, TX 77204–4792
Martyn V. Twigg
Affiliation:
Johnson Matthey Catalytic Systems Division, Royston, Herts. SG8 5HE, United Kingdom
Get access

Extract

Successful catalyst supports must fulfill different requirements simultaneously [1]. By serving as a base for catalytic components, they provide good activity and selectivity, but certain physical properties are equally important. For example, small catalyst particles are desirable in order to avoid external heat and mass transfer limitations and to provide high effectiveness for the active component dispersed throughout the particle. However, small particles pack with low bed porosities and unacceptable pressure drop results. Open-pore ceramic foams show promising properties that could overcome these difficulties. They have good high temperature resistance, low bulk density and tortuous flow patterns, together with open porosity as high as 85% formed from megapores 0.04 to 1.5 mm in diameter [2]. Characteristic parameters include cell size, window size and surface area, all correlated with the number of pores per inch [PPI]. Ceramic foams were first used as molten metal filters [3,4] and catalytic combustion devices [5–7]. Catalytic applications are beginning to appear and these have been reviewed by Twigg and Richardson [8].

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Richardson, J. T., Principles of Catalyst Development, (Plenum Press, New York, 1989), p. 26.Google Scholar
2. Gibson, L. J. and Ashby, M. F., Cellular Solids, Structures and Properties, (Pergamon Press, Oxford, 1988).Google Scholar
3. Brockmeyer, J. W. and Aubrey, L. S., Ceram. Eng. Sci. Proc. 8, 63 (1987).Google Scholar
4. Serville, P. K., Clift, R., Withers, C. J., and Keidel, W., Filtr. Sep. 26, 265 (1989).Google Scholar
5. Maiorov, V. A., Vasil'ev, L. L. and Polyaev, V. M., J. Eng. Phys. 47, 1110 (1984).Google Scholar
6. Viskanta, R., in Proceedings of the Third ASME/JSME Joint Thermal Engineering Conference, edited by Lloyd, J. R. and Kurosaki, Y. (ASME/JSME, New York, 1991) p. 163.Google Scholar
7. Anderson, F., Prog. Energy Combust. Sci. 18, 12 (1991).Google Scholar
8. Twigg, M. V. and Richardson, J. T., presented at the Sixth International Symposium for the Scientific Bases for the Preparation of Catalysts, Louvain-la-Neuve, Belgium, 1994 (to be published).Google Scholar
9. Schwartzwalder, K. and Somers, A., U.S. Patent No. 3,090,094 (1963).Google Scholar
10. Druche, F., Ger. Offen. DE 3,510,176 (1986).Google Scholar
11. Kondo, H., Yoshida, H., Takeuchi, Y., Nakagawa, S., JP 62 61,645 (1987).Google Scholar
12. Lange, F. F. and Miller, K. T., Adv. Ceram. Mater. 2, 827 (1987).Google Scholar
13. Twigg, M. V. and Sengelow, W. M., U. S. Patent No. 4,810,685 (1989.Google Scholar
14. Twigg, M. V. and Sengelow, W. M., U. S. Patent No. 4,863,712 (1989).Google Scholar
15. Satoyuki, I. and Nonaka, S., Jpn. Kokai Tokkyo Koho JP 03 123,641 (1991).Google Scholar
16. Satoyuki, I. and Inoe, M., Jpn. Kokai Tokkyo Koho JP 03 122,070 (1991).Google Scholar
17. Clyde, R. A., U.S. Patent No. 3,998,758 (1976).Google Scholar
18. Clyde, R. A., U.S. Patent No. 3,900,646 (1975).Google Scholar
19. Mizrah, T., Gabathuler, J. P., Gauckler, L., Baiker, A., Padeste, L., and Meyer, H. P., presented at the First International Symposium and Exposition on Ceramics for Environmental Protection, Koln, Germany, 1988 (unpublished).Google Scholar
20. Nir, A. and Pismen, L., Chem. Eng. Sci. 32, 35 (1977).Google Scholar
21. Rodriques, A., Ahn, B., and Zoulanian, A., J. AIChE 28, 541 (1982).Google Scholar
22. Cresswell, D., Appl. Catal. 15, 103 (1985).Google Scholar
23. Rodriques, A. and Ferreira, R. Quinta, AIChE Symp. Ser. 84, 80 (1988).Google Scholar
24. Rodriques, A. and Ferreira, R. Quinta, Chem. Eng. Sci. 45, 2653 (1990).Google Scholar
25. Ferreira, R. M. Quinta, Marques, M. M., Babo, M. F., and Rodrigues, A. E., Chem. Eng. Sci. 47, 2909 (1992).Google Scholar
26. Campbell, L. E., U.S. Patent No. 5,256,387 (1993); 5,217,939 (1993).Google Scholar
27. Haruta, M., Souma, Y., and Sano, H., J. Hydrogen Energy 7, 729 (1982).Google Scholar
28. Inui, T., Kuroda, T., and Otowa, T., J. Fuel Soc. Jap. 64, 270 (1985).Google Scholar
29. Inui, T., Adach, Y., Kuroda, T., Hanya, M. and Miyamoto, A., Chem. Express 1, 255 (1986).Google Scholar
30. Mangold, K., Foerster, G. and Taetaner, W., Ger. Offen. DE 3,732,653 (1989).Google Scholar
31. Mangold, K., Taetzner, W., Ger. Offen. DE 3,731,888 (1989).Google Scholar
32. Hickman, D. A. and Schmidt, L. D., Science 259, 343 (1993).Google Scholar
33. Huff, M. and Schmidt, L. D., J. Phys. Chem. 97, 11815 (1993).Google Scholar
34. Vonkeman, K. A. and Jacobs, L. V., Eur. Pat. Appl. EP 576,096 (1993).Google Scholar
35. Torniainen, P. M., Chu, X. and Schmidt, L. D., J. Catal. 146, 1 (1994).Google Scholar
36. Weldenbach, G., Koepernik, K. H. and Brautigam, H., U.S. Patent No. 4,088,607 (1978).Google Scholar
37. Narumiya, T. and Izuhara, S., U.S. Patent No. 4,308,233 (1981).Google Scholar
38. Hondo, H., Yoshida, H., Miura, Y., Takeuchi, Y. and Nagagawa, S., JP 63 883,049 (1988).Google Scholar
39. Muramatsu, A. and Yoshida, K., Jpn. Kokai Tokkyo Koho JP 04 04,237 (1992).Google Scholar
40. Tabata, K., Matsumoto, I., Matsumoto, T., Fukuda, J., Jpn. Kokai Tokkyo Koho JP 04 04,019 (1992).Google Scholar
41. Watabe, Y., Irako, K., Miyajima, T., Yoshimoto, T. and Murakami, Y., SAE Technical Paper 830082 (1983).Google Scholar
42. Tutko, J. J., Lestz, S. S., Brokmeyer, J. W. and Dore, J. E., SAE Technical Paper 840073 (1984).Google Scholar
43. Inui, T. and Otowa, T., Appl. Catal. 14, 83 (1985).Google Scholar
44. Kawabata, M., Matsumoto, S., Kito, K., Yoshida, H., JP 01 143,645 (1989).Google Scholar
45. Mizrah, T., Maurer, A., Gauchler, L and Gabathuler, J-P, SAE Technical Paper 890172 (1989).Google Scholar
46. Nitsuta, M. and Ito, M., Jpn. Kokai Tokkyo Koho JP 02 173,310 (1990).Google Scholar
47. Hogan, R. E. Jr., Skocypec, R. D., Diver, R. B., Fish, J. D., Garrait, M., and Richardson, J. T., Chem. Eng. Sci. 45, 2751 (1990).Google Scholar
48. Buck, R., Muir, J. F., Hogan, R. E. Jr., and Skocypec, R. D., Solar Energy Materials, Proceedings of the 5th Symposium on Solar High-Temperature Technologies, Davos, Switzerland, August 1990 24, 449 (1991).Google Scholar
49. Hogan, R. E. Jr., and Skocypec, R. D., J. Solar Eng. Eng. 114, 106 (1992).Google Scholar
50. Skocypec, R. D. and Hogan, R. E., J. Solar Eng. Eng. 114, 112 (1992 ). Google Scholar
51. Muir, J. F., Hogan, R. E. Jr., Skocypec, R. D. and Buck, R., The CAESAR project, Sandia Report SAND92–2131 (1993).Google Scholar
52. Garrait, M., A Ceramic Matrix Catalyst for Solar Reforming M.S.ChE. Thesis, Department of Chemical Engineering, University of Houston, (1989).Google Scholar
53. Remue, D., Properties of Ceramic Foam Catalyst Supports M.S.ChE. Thesis, Department of Chemical Engineering, University of Houston, (1993).Google Scholar
54. Hung, J-K (private communication).Google Scholar
55. Richardson, J. T. and Paripatyadar, S. A., Appl. Catal. 61, 293 (1990).Google Scholar
56. Philipse, A. P. and Schram, H. L., J. Am. Ceram. Soc. 74, 728 (1991).Google Scholar
57. Ergun, S., Chem. Eng. Prog. 48(2), 89 (1952).Google Scholar
58. Younis, L. B. and Viskanta, R., Int. J. Heat Mass Transfer 6, 1425 (1993).Google Scholar
59. Meng, W. H., McCordic, C., Gore, J. P. and Herold, K. E, ASME/JSME Thermal Engineering Proceedings 5, 181 (1991).Google Scholar
60. Richardson, J. T., Paripatyadar, S. A., and Shen, J. C., AICHE J. 34, 743 (1988).Google Scholar