Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T02:14:22.640Z Has data issue: false hasContentIssue false

Cement Composites Reinforced with Functionalized Carbon Nanotubes

Published online by Cambridge University Press:  30 July 2014

Sergey Petrunin
Affiliation:
Department of Nanotechnology and Theoretical Physics, Vladimir State University, Vladimir, Russia
Viktor Vaganov
Affiliation:
Department of Nanotechnology and Theoretical Physics, Vladimir State University, Vladimir, Russia
Konstantin Sobolev
Affiliation:
Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, Milwaukee, USA
Get access

Abstract

This paper reports on the effect of surface functionalization of multi-wall carbon nanotubes on the strength and structure of portland cement composites. Reference nanotubes and nanotubes functionalized by carboxylic groups are used in this research.

Grafting of functional groups on the surface of the nanotubes allows the acceleration of cement hydration. It is established that the use of carboxylated nanotubes contributed to early strength development. The multi-wall carbon nanotubes reinforced composites are characterized by the high content of the calcium silicate hydrates and a very dense structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sobolev, K. and Ferrada-Gutiérrez, M., Am. Ceram. Soc. Bull. 10, 1417 (2005).Google Scholar
Sanchez, F. and Sobolev, K., Constr. Build. Mater. 24, 20602071 (2010).CrossRefGoogle Scholar
Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, S.P., Cement Concrete Res. 40, 1052 (2010).CrossRefGoogle Scholar
Nasibulina, L. I., Anoshkin, I. V., Semencha, A. V., Tolochko, O. V., Malm, J. E. M., Karppinen, M. J., Nasibulin, A. G., Kauppinen, E. I., Mater. Phys. Mech. 13, 77 (2012).Google Scholar
Yakovlev, G.I., Pervushin, G.N., Korzhenko, A., Buryanov, A.F., Pudov, I.A., Lushnikova, A.A., Constr. Mater. 2, 47 (2011), in Russian.Google Scholar
Petrunin, S.Y., Popov, M.Y., Vaganov, V.E., Reshetniak, V.V., Zakrevskaya, L.V., Nanotech. Constr. 5, 65 (2012), in Russian.Google Scholar
Rakov, E.G., Russ. Chem. Rev. 70, 827 (2001).CrossRefGoogle Scholar
Sobolkina, A., Mechtcherine, V., Khavrus, V., Maier, D., Mende, M., Ritschel, M., Leonhardt, A., Cement Concrete Comp. 34, 1104 (2012).CrossRefGoogle Scholar
Li, G.Y., Ming Wang, Pei, Zhao, Xiaohua, Carbon 43, 1239 (2005).CrossRefGoogle ScholarPubMed
Yakovlev, G., Keriene, J., Gailius, A., Girniene, I., J. Mater. Sci. 12, 147 (2006).Google Scholar
Nasibulina, L. I., Anoshkin, I.V., Nasibulin, A. G., Cwirzen, A., Penttala, V., Kauppinen, E. I., J. Nano Mater. 1, 6 (2012).Google Scholar