Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T00:08:55.746Z Has data issue: false hasContentIssue false

Cavities for Intersubband Transitions

Published online by Cambridge University Press:  10 February 2011

V. Berger
Affiliation:
Laboratoire Central de Recherches, THOMSON-CSF, Domaine de Corbeville, 91400 ORSAY Cedex, FRANCE.
J-Y Duboz
Affiliation:
Laboratoire Central de Recherches, THOMSON-CSF, Domaine de Corbeville, 91400 ORSAY Cedex, FRANCE.
E. Ducloux
Affiliation:
Laboratoire Central de Recherches, THOMSON-CSF, Domaine de Corbeville, 91400 ORSAY Cedex, FRANCE.
F. Lafon
Affiliation:
Laboratoire Central de Recherches, THOMSON-CSF, Domaine de Corbeville, 91400 ORSAY Cedex, FRANCE.
I. Pavel
Affiliation:
Laboratoire Central de Recherches, THOMSON-CSF, Domaine de Corbeville, 91400 ORSAY Cedex, FRANCE.
P. Boucaud
Affiliation:
Institut dElectronique Fondamentale, URA CNRS 22, Batiment 220, Université Paris-Sud, 91405 ORSAY Cedex, FRANCE.
O. Gauthier-Lafaye
Affiliation:
Institut dElectronique Fondamentale, URA CNRS 22, Batiment 220, Université Paris-Sud, 91405 ORSAY Cedex, FRANCE.
F. Julien
Affiliation:
Institut dElectronique Fondamentale, URA CNRS 22, Batiment 220, Université Paris-Sud, 91405 ORSAY Cedex, FRANCE.
A. Tchelnokov
Affiliation:
Institut dElectronique Fondamentale, URA CNRS 22, Batiment 220, Université Paris-Sud, 91405 ORSAY Cedex, FRANCE.
R. Planel
Affiliation:
Laboratoire de Microstructures et Microélectronique, CNRS, 196 Av. H. Ravera, 92220 BAGNEUX, FRANCE.
Get access

Abstract

The different possible geometries for intersubband transitions in microcavities are discussed. A consequence of the selection rule governing intersubband transition is the vanishing interaction with the electromagnetic field inside a usual vertical cavity. The geometry of vertical planar cavities which has been used extensively with interband transitions is therefore useless in the case of intersubband transitions. Different solutions are reviewed to overcome this problem. The breakdown of the selection rule in a vertical cavity is first discussed. This can be done with the use of vertical quantum wells, or thanks to intracavity diffraction gratings. Second, the use of in plane cavities is discussed. Two solutions are here envisaged: Whispering gallery modes in microdisk cavities, and efficient etched air/GaAs Bragg mirrors. Concerning the latter attractive solution, the losses by diffraction into the substrate are evaluated theoretically and experimentally. The solution of the Maxwell equations by a finite element method in this three dimensional system shows the great importance of diffraction. These results are confirmed by waveguided Fourier transform spectroscopy. To overcome this difficulty, we propose the use of lower refractive index substrates, such as oxidized AlAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ünlü, M. S., J. Appl. Phys. 78, 607 (1995).Google Scholar
[2] Hunt, N. and Schubert, E. F., in Microcavities and Photonic bandgaps: Physics and Applications, edited by Rarity, J. and Weisbuch, C. (Kluwer Academic Publishers, 1996).Google Scholar
[3] Jewell, J. L. et al., IEEE J. of Quant. Elee. 27, 1332 (1991).Google Scholar
[4] Jewell, J. L., Harbison, J. P., and Scherer, A., Scientific American November 91, 56 (1991).Google Scholar
[5] Hadji, E., Bleuse, J., Magnea, N., and Pautrat, J., Appl. Phys. Lett. 68, 2480 (1996).Google Scholar
[6] Yan, R. H., Simes, R. J., and Coldren, L. A., IEEE Photonics Tech. Lett. 1, 273 (1989).Google Scholar
[7] Whitehead, M., Rivers, A., and Parry, G., El. Lett. 26, 1588 (1990).Google Scholar
[8] Berman, P., Cavity Quantum Electrodynamics (Academic Press, Boston, 1994).Google Scholar
[9] Haroche, S. and Raimond, J., in Advances in Atomic and Molecular Physics Vol XX, edited by Bates, D. and Bederson, B. (Academic Press, New York, 1985).Google Scholar
[10] Microcavities and Photonic Band Gaps: Physics and Applications, edited by Rarity, J. and Weisb'uch, B. (Kluwer Academic Publishers, Dordrecht, 1996).Google Scholar
[11] Hayashi, Y. et al., El. Lett. 31, 560 (1995).Google Scholar
[12] Yang, G. M., MacDougal, M. H., and Dapkus, P., Electron. Lett. 31, 886 (1995).Google Scholar
[13] Weisbuch, C., Nishioka, M., Ishikawa, A., and Arakawa, Y., Phys. Rev. Lett. 69, 3314 (1992).Google Scholar
[14] Houdré, R. et al., Phys. Rev. Lett. 73, 2043 (1994).Google Scholar
[15] McCall, S. L. et al., Appl. Phys. Lett. 60, 289 (1992).Google Scholar
[16] Yamamoto, Y. and Slusher, R. E., Phys. Today june 93, 66 (1993).Google Scholar
[17] Mohideen, U. et al., Appl. Phys. Lett. 64, 1911 (1994).Google Scholar
[18] Faist, J. et al., Appl. Phys. Lett. 69, 2456 (1996).Google Scholar
[19] Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals (Princeton University Press, Princeton, 1995).Google Scholar
[20] Yablonovitch, E., Nature 383, 665 (1996).Google Scholar
[21] Rosencher, E., Vinter, B., and Levine, B., Intersubband Transitions in Quantum Wells (Plenum, New York, 1992).Google Scholar
[22] Liu, H. C., Levine, B. F., and Andersson, J. Y., Quantum Well Intersubband Transition Physics and Devices (Plenum, Dordrecht, 1994).Google Scholar
[23] Levine, B. F., J. of Appl. Phys. 74, Rl (1993).Google Scholar
[24] Faist, J. et al., Science 264, 553 (1994).Google Scholar
[25] Sirtori, C., private communication.Google Scholar
[26] Gauthier-Lafaye, O. et al., submitted to Phys. Rev. Lett.Google Scholar
[27] Walther, M. et al., Appl. Phys. Lett. 60, 521 (1991).Google Scholar
[28] Vermeire, G. et al., J. of Crystal Growth 124, 513 (1992).Google Scholar
[29] Berger, V., Vermeire, G., Demeester, P., and Weisbuch, C., Appl. Phys. Lett. 66, 218 (1995).Google Scholar
[30] Rosencher, E. and Bois, P., Phys. Rev. B 44, 11315 (1991).Google Scholar
[31] Sirtori, C., Capasso, F., Sivco, D. L., and Cho, A. Y., Appl. Phys. Lett. 68, 1010 (1992).Google Scholar
[32] Karunasiri, R. P., Mii, Y. J., and Wang, K. L., IEEE Electron Device Lett. 11, 227 (1990).Google Scholar
[33] Berger, V. et al., Appl. Phys. Lett. 61, 1898 (1992).Google Scholar
[34] Biasiol, G. et al., Appl. Phys. Lett. 69, 2710 (1996).Google Scholar
[35] Martinet, E. and Kapon, E., private communication.Google Scholar
[36] Berger, V., Vodjdani, N., Delacourt, D., and Schnell, J., Appl. Phys. Lett. 68, 1904 (1996).Google Scholar
[37] Anderson, J. Y. and Lundqvist, L., J. Appl. Phys. 71, 3600 (1991).Google Scholar
[38] Duboz, J. Y., J. of Appl. Phys. to be published (1996).Google Scholar
[39] Duboz, J. Y. et al., Appl. Phys. Lett, to be published (1997).Google Scholar
[40] Nagle, J., private communication.Google Scholar
[41] Duboz, J. Y., in this volume.Google Scholar
[42] Stanley, R. P. et al., Appl. Phys. Lett. 65, 1883 (1994).Google Scholar
[43] Stanley, R. P. et al., in Microcavities and Photonic bandgaps: Physics and Applications, edited by Rarity, J. and Weisbuch, C. (Kluwer Academic Publishers, 1996).Google Scholar
[44] Slusher, R. E. et al., Appl. Phys. Lett. 63, 1310 (1993).Google Scholar
[45] Mohideen, U. and Slusher, R., in Microcavities and Photonic bandgaps: Physics and Applications, edited by Rarity, J. and Weisbuch, C. (Kluwer Academic Publishers, 1996).Google Scholar
[46] Chu, D. Y. et al., Appl. Phys. Lett. 65, 3167 (1994).Google Scholar
[47] Shin, K.-C. et al., IEEE Photon. Technol. Lett. 7, 1119 (1995).Google Scholar
[48] Baba, T. et al., in Int. Conf. Solid State Devices and Materials (Osaka, 1995).Google Scholar
[49] Espinolada, R. P. et al., Appl. Phys. Lett. 68, 241 (1996).Google Scholar
[50] Krauss, T. F. and Rue, R. M. D. L., Appl. Phys. Lett. 68, 1613 (1996).Google Scholar
[51] Born, M. and Wolf, E., Principle of Optics (Pergamon Press, Oxford, 1980).Google Scholar