Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T08:29:39.306Z Has data issue: false hasContentIssue false

Cathodoluminescence Emission from Crystalline Linbo3

Published online by Cambridge University Press:  21 February 2011

J. Llopis
Affiliation:
Departamento de Física del Estado Sólido, Facultad de Ciencias Físicas, Universidad Complutense, Madrid (Spain)
C. Ballesteros
Affiliation:
Departamento de Física del Estado Sólido, Facultad de Ciencias Físicas, Universidad Complutense, Madrid (Spain)
R. Gonzalez
Affiliation:
Departamento de Física del Estado Sólido, Facultad de Ciencias Físicas, Universidad Complutense, Madrid (Spain)
Y. Chen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
Get access

Abstract

Cathodoluminescence (CL) emission from as-grown and indented LiNbO3 single crystals has been studied. The spectrum is strongly affected by deformation of the surface region. Three emission bands at about 410, 525 and 580nm have been observed. Irradiation with the electron microscope beam at very high current intensities causes a severe damage on the irradiated area. This effect can also be observed on the indented areas where the indentation pyramid can not be recognized after prolonged irradiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Burns, G., O'Kane, D.F. and Title, R.S., Phys. Lett. 23, 56 (1966)Google Scholar
2. Glass, A.M., J. Chem. Phys. 50, 1501 (1969);Google Scholar
2a. J. Appl. Phys. 44, 508 (1973).Google Scholar
3. Hordvik, A. and Schlossberg, H., Appl. Phys. Lett. 20, 197 (1972);CrossRefGoogle Scholar
3a. von der Linde, D., Glass, A.M. and Rodgers, K.F. J. Appl. Phys. 44, 509 (1973).Google Scholar
4. von der Linde, D., Glass, A.M. and Rodgers, K.F., J. Appl. Phys. 47, 217 (1976).Google Scholar
5. Sirota, N.N. and Yarunicher, V.F., J. Appl. Spectrosc. 25 (4), 1259 (1976)Google Scholar
6. Powell, R.C. and Freed, E.E., J. Chem. Phys 70 (10), 4681 (1979)Google Scholar
7. Krol, D.M., Blasse, G. and Powell, R.C., J. Chem. Phys. 73, 163 (1980)Google Scholar
8. Arizmendi, L., Cabrera, J.M. and Agulló-López, F., Ferroelectrics 26, 823 (1980)Google Scholar
9. Arizmendi, L., Cabrera, J.M. and Agulló-López, F., Solid State Comm. 40, 583 (1981)Google Scholar
10. Pareja, R., González, R. and Chen, Y.. To be published.Google Scholar
11. Velednitskaya, M.A., Rozhanskii, V.N., Comolova, L.F., Saparin, G.V., Schreiber, J. and Brummer, O., Phys. Status Solidi A 32, 123 (1975)Google Scholar
12. Pennycook, S.J. and Brown, L.M., J. Luminisc. 18/19, 905 (1979)Google Scholar
13. Piqueras, J., Llopis, J. and Delgado, L., J. Appl. Phys. 52, 4341 (1981)CrossRefGoogle Scholar
14. Llopis, J. and Piqueras, J., J. Appl. Phys. 54, 4570 (1983)Google Scholar