Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T12:53:21.293Z Has data issue: false hasContentIssue false

Catalytic Properties of Ni3Al Foils for Hydrogen Production

Published online by Cambridge University Press:  26 February 2011

Toshiyuki Hirano*
Affiliation:
[email protected], National Institute for Materials Science, Fuel Cell Materilas Center, 1-2-1 Sengen, Tsukuba, 305-0047, Japan, 81-29-859-2545, 81-29-859-2501
Get access

Abstract

We have successfully developed thin foils of boron-free Ni3Al (below 100 μm in thickness) by cold rolling, and recently found that the foils exhibit high catalytic activity for methanol decomposition. A little has been known about catalytic activity in Ni3Al. Even more interestingly, the high catalytic activity appears on flat foils whose surface area is very low. This paper provides a review of the characteristic features of the catalytic properties investigated in my group. Methanol was effectively decomposed into H2 and CO over the foils above 713 K. The production rates of H2 and CO increased with an increase of time during the initial period of reaction, indicating that the Ni3Al foils were spontaneously activated under the reaction conditions. Surface analyses revealed that fine Ni particles dispersed on carbon nanofibers formed on the foils during the reaction. The high catalytic performance of the foils can be attributed to the spontaneous formation of this nanostructure during the reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stoloff, N. S., Int. Mater. Rev., 34, 153(1989).Google Scholar
2. Harada, H., Yamazaki, M., and Koizumi, Y., Tetsu-to-Hagane (J. Iron and Steel Inst. Japan), 65, 1049(1979).Google Scholar
3. Aoki, K. and Izumi, O., Nippon Kinzoku Gakkai Shi, 43, 1190(1979).Google Scholar
4. Liu, C. T., White, C. L., and Horton, J. A., Acat Metall., 33, 213(1985).Google Scholar
5. Liu, C. T. and Sikka, V. K., J. Metall., 38, 19(1986).Google Scholar
6. Demura, M., Suga, Y., Umezawa, O., Kishida, K., George EP, E. P., and Hirano, T., Intermetallics, 9, 157 (2001).Google Scholar
7. Demura, M., Kishida, K., Suga, Y., and Hirano, T., Metall. Mater. Trans. A, 33A, 2607 (2002).Google Scholar
8. Demura, M., Kishida, K., Suga, Y., Takanashi, M., and Hirano, T., Scripta Mater., 47, 267 (2002).Google Scholar
9. Kishida, K., Demura, M., and Hirano, T., Phil. Mag. A, 83, 3029(2003).Google Scholar
10. Cui, C., Demura, M., Kishida, K., and Hirano, T., J. Mater. Res., 20, 1054(2005).Google Scholar
11. Kishida, K., Demura, M., Kobayashi, S., Xu, Y., and Hirano, T., Defect and Diffusion Forum, 233–234, 37 (2004).Google Scholar
12. Xu, Y., Kameoka, S., Kishida, K., Demura, M., Tsai, A. P., Xu, Y., and Hirano, T., Mater. Trans., 45, 3177(2004).Google Scholar
13. Xu, Y., Kameoka, S., Kishida, K., Demura, M., Tsai, A. P., Xu, Y., and Hirano, T., Intermetallics, 13, 151(2005).Google Scholar
14. Chun, D. H., Xu, Y., Demura, M., Kishida, K., Oh, M. H., Hirano, T., and Wee, D. M., Catal. Lett., 106, 71(2006).Google Scholar
15. Chun, D. H., Xu, Y., Demura, M., Kishida, K., Wee, D. M., and Hirano, T., J. Catal., 243, 99(2006).Google Scholar
16. Ehrfeld, W., Hessel, V., and Lower, H., New Technology for Modern Chemistry, Wiley-VCH, Weinheim, Germany (2000).Google Scholar
17. Huber, G. W., Shabaker, J. W., and Dumesic, J. A., Science, 300, 2075(2003).Google Scholar
18. Komatsu, T., Hyodo, S., and Yashima, T., J. Phys. Chem. B, 101, 5565(1997).Google Scholar
19. Ertl, G., Knozinger, H., and Weitkamp, J., Preparation of Solid Catlysts, Wiley-VCH, Weinheim, Germany (1999), p. 28.Google Scholar
20. Bokx, P. K. de, Balkende, A. R., Geus, J. W., J. Catal., 117, 467 (1989).Google Scholar
21. Nylund, A. and Olefjord, I., Surf. Interface Anal., 21, 283(1994).Google Scholar
22. Rodriguez, N. M., Kim, M. S. and Baker, R. T. K., J. Phys. Chem., 98, 13108 (1994).Google Scholar
23. Otsuka, K., Ogihara, H. and Takenaka, S., Carbon 41, 223 (2003).Google Scholar
24. Takenaka, S., Kato, E., Tomikubo, Y. and Otsuka, K., J. Catal., 219, 176 (2003).Google Scholar
25. Balkenede, A.R., de Bokx, P.K., Geus, J.W., Appl. Catal., 30, 47 (1987).Google Scholar
26. Matsumura, Y., Tode, N., Yazawa, T., Haruta, M., J. Mol. Catal. A-Chem., 99, 183 (1995).Google Scholar
27. Matsumura, Y., Kuraoka, K., Yazawa, T., Haruta, M., Catal. Today, 45, 191(1998).Google Scholar
28. Matsumura, Y., Tanaka, K., Tode, N., Yazawa, T., Haruta, M., J. Mol. Catal. A-Chem, 152, 157(2000).Google Scholar
29. Nakagawa, K., Hashida, T., Kajita, C., Ikenaga, N., Kobayashi, T., Nishitani-Gamo, M., Suzuki, T., Ando, T., Catal. Lett., 80, 161 (2002).Google Scholar
30. Haerig, M. and Hofmann, S., Appl. Surf. Sci., 125, 99 (1998).Google Scholar
31. Schumann, E., Schnotz, G., Trumble, K.P. and Rühle, M., Acta Met. Mater. 40, 1311(1992).Google Scholar
32. Gao, W., Li, Z., Wu, Z., Li, S., He, Y., Intermetallics, 10, 263(2002).Google Scholar
33. Rodriguez, N.M., Kim, M.S., Baker, R.T.K., J. Phys. Chem., 98, 13108(1994).Google Scholar
34. Baker, R.T.K., Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd, St. Louis, (1999), p. 932.Google Scholar
35. Baker, R.T.K., Amer. Chem. Soc. Fuel Chem., 41, 521(1996).Google Scholar