Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T10:41:08.009Z Has data issue: false hasContentIssue false

Cast and Rolling Textures of NiMnGa Alloys

Published online by Cambridge University Press:  01 February 2011

Robert Chulist
Affiliation:
[email protected], TU Dresden, Institut für Strukturphysik, Zellescher Weg 16, Dresden, 01062, Germany
Martin Poetschke
Affiliation:
[email protected], Leibniz-Institut für Festkoerper- und Werkstoffforschung, Dresden, 01069, Germany
Andrea Boehm
Affiliation:
[email protected], Fraunhofer-Institut fuer Werkzeugmaschinen und Umformtechnik, Dresden, 01187, Germany
Heinz-Guenter Brokmeier
Affiliation:
[email protected], GKSS Forschungszentrum, Geesthacht, 21494, Germany
Ulf Garbe
Affiliation:
[email protected], GKSS Aussenstation, ZWE FRM II, Garching, 85747, Germany
Thomas Lippmann
Affiliation:
[email protected], GKSS Forschungszentrum, Geesthacht, 21502, Germany
Carl-Georg Oertel
Affiliation:
[email protected], TU Dresden, Institut für Strukturphysik, Zellescher Weg 16, Dresden, 01062, Germany
Werner Skrotzki
Affiliation:
[email protected], TU Dresden, Institut für Strukturphysik, Zellescher Weg 16, Dresden, 01062, Germany
Get access

Abstract

The texture of two polycrystalline NiMnGa magnetic shape memory alloys fabricated by directional solidification and hot rolling has been measured with high-energy synchrotron radiation and neutron diffraction. At room temperature the alloys used are composed of a modulated (7M) and non-modulated (NM) martensitic structure. The texture of the directionally solidified alloy for all phases is a pronounced fibre texture with <100> preferentially aligned along the growth direction. In the directionally solidified case a variant selection took place with [001] dominating. The texture of the hot rolled alloy shows a weak recrystallization texture with {111} and <112> aligned parallel to the rolling plane and rolling direction, respectively. The texture results are discussed with respect to material, processing and phase transformations including variant selection.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Müllner, P., Chernenko, V.A., Wollgarten, M., Kostorz, G., Appl. Phys. Lett. 92 (2002) 6708 Google Scholar
2 Müllner, P., V.Chernenko, A., Kostorz, G., J. Magn. Magn. Mater. 267 (2003) 325 Google Scholar
3 Chernenko, V.A., Scripta Mater. 40 (1999) 523 Google Scholar
4 Ullakko, K., Huang, J.K., Kantner, C., Kokorin, V.V., O'Handley, R.C., Appl. Phys. Lett. 69 (1996) 523 Google Scholar
5 Martynov, V.V., J. de Physique IV 5 (1995) 5 Google Scholar
6 Pons, J., Chernenko, V.A., Santamarta, R., Cesari, E., Acta Mater. 48 (2000) 3027 Google Scholar
7 Chernenko, V.A., Pons, J., Segui, C., Cesari, E., Acta Mater. 50 (2002) 53 Google Scholar
8 Wedel, B., Suzuki, M., Murakami, Y., Wedel, C., Suzuki, T., Shinto, D., Itagaki, K., J. Alloys Comp. 290 (1999) 137 Google Scholar
9 Pötschke, M., Gaitzsch, U., Roth, S., Rellinghaus, B., Schultz, L., J. Magn. Magn. Mater. 316 (2007) 383 Google Scholar
10 Wassermann, G., Grewen, J., Texturen metallischer Werkstoffe (1962) Springer, Berlin Google Scholar
11 Raabe, D., Lücke, K., Mater. Sci. Eng. 157–162 (1994) 597 Google Scholar