Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T18:29:24.278Z Has data issue: false hasContentIssue false

Carrier transport of extended and localized states in InGaO3(ZnO)5

Published online by Cambridge University Press:  17 March 2011

Kenji Nomura
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan Hosono Transparent ElectroActive Materials, ERATO, JST, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
Hiromichi Ohta
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
Kazushige Ueda
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan
Toshio Kamiya
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan Hosono Transparent ElectroActive Materials, ERATO, JST, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
Masahiro Hirano
Affiliation:
Hosono Transparent ElectroActive Materials, ERATO, JST, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
Hideo Hosono
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan Hosono Transparent ElectroActive Materials, ERATO, JST, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
Get access

Abstract

Carrier transport properties and electronic structure of an n-type transparent oxide semiconductor, InGaO3(ZnO)5, were investigated using single-crystalline thin films. Room-temperature Hall mobility strongly depends on carrier concentration, and rapidly increased from ∼ 2 cm2(Vs)-1 to > 10 cm2(Vs)-1 around the carrier concentration (Nth ∼3 × 1018 cm−3. This change is associatedwith insulator-metal transition. These results are explained by a model similar to Anderson localization, in which shallow semi-localized states are formed originating from random distribution of Ga3+ and Zn2+ ions in the intrinsic crystal structure of InGaO3(ZnO)5. The present conclusion suggests that electron densities larger than Nth are necessary to attain high performances in drift carrier devices fabricated using InGaO3(ZnO)5. It was demonstrated that transparent filed-effect transistors exhibited good performances such as a “normally-offcharacteristics”, an on/off current ratios as large as 105 and a field-effect mobility ∼80 cm2(Vs)-1when high-k material, amorphous HfOx, was used as a gate insulator.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kawazoe, H., Yasukawa, M., Hyodou, H., Kurita, M., Yanagi, H., and hosono, H., Nature 389, 939 (1997).Google Scholar
2. Yanagi, H., Hase, T., Ibuki, S., Ueda, K., and Hosono, H., Appl. Phys. Lett. 78, 1583 (2001).Google Scholar
3. Ohta, H., Kawamura, K., Orita, M., Sarukura, N., Hirano, M., and Hosono, H., Appl. Phys. Lett. 77, 425 (2000).Google Scholar
4. Prins, M. W.J., Grosse-Holz, K.-O., Muller, G., Cillessen, J. F.M., Giesbers, J. B., Weening, R. P., and Wolf, R.M., Appl. Phys. Lett. 68, 3650 (1996).Google Scholar
5. Hoffman, R. L., Norris, B. J., and Wager, J. F., Appl. Phys. Lett. 82, 733 (2003).Google Scholar
6. Norris, B. J., Anderson, J., Wager, J. F., and Keszler, D. A., J. Phys D 36, L105 (2003).Google Scholar
7. Kimizuka, N., Isobe, M., and Nakamura, M., J. Solid State Chem. 116, 170 (1995).Google Scholar
8. Li, C. Bando, Y., Nakamura, M., Onoda, M., and Kimizuka, N., J. Solid State Chem. 139, 347 (1998).Google Scholar
9. Ohta, H., Nomura, K., Orita, M., Hirano, M., Ueda, K., Suzuki, T., Ikuhara, Y., and Hosono, H., Adv. Funct. Mater. 13, 139 (2003)Google Scholar
10. Ohta, H., Tanji, H., Orita, M., Hosono, H., and Kawazoe, H., Mater. Res. Soc. Symp. Proc. 570, 309 (1999).Google Scholar
11. Orita, M., Ohta, H., Hirano, M., Narushima, S., and Hosono, H., Philo. Mag. B 81, 501 (2001).Google Scholar
12. Seto, John Y. W., J. Appl. Phys. 46, 5247 (1975).Google Scholar
13. Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., and Hosono, H., Science. 300, 1269 (2003).Google Scholar