Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T06:26:57.076Z Has data issue: false hasContentIssue false

Carrier Transport and Velocity Overshoot in Strained Si On Sige Heterostructures

Published online by Cambridge University Press:  10 February 2011

David K. Ferry
Affiliation:
Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287-5706
Gabriele Formicone
Affiliation:
Motorola SPS, 2100 E.Elliot Road, Tempe, AZ 85284
Dragica Vasileska
Affiliation:
Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287-5706
Get access

Abstract

We examine the velocity overshoot effect in strained Six on Six-Ge1-x heterostructures. We also investigate the performance of surface-channel strained-Si MOSFETs for devices with gate lengths representative of the state-of-the-art technology. The Ensemble Monte Carlo method, self-consistently coupled with the 2D Poisson equation solver, is used in the investigation of the device performance. Our simulations suggest that, in short-channel devices, velocity overshoot is very important. In fact, when velocity overshoot occurs, it greatly affects the carrier dynamics and the current enhancement factor of both surface-channel strained-Si and conventional Si MOSFETs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dennard, R. H., Gaensslen, F. H., Yu, H.-N., Rideout, V. L., Bassous, E., and LeBlanc, A. R., IEEE J. Solid-State Circuits 9, 256 (1974).Google Scholar
2. Brews, J. R., Fichtner, W., Nicollian, E. H., and Sze, S. M., IEEE Electron Device Lett. 1, 2 (1980).Google Scholar
3. Ferry, D. K., and Akers, L. A., IEEE Circuits and Devices Magazine 13, 41 (1997).Google Scholar
4. Ono, M., Saito, M., Yoshitomi, T., Fiegna, C., Ohguro, T. and Iwai, H., IEDM Tech. Dig., 119 (1993); IEEE Trans. Electron Devices 42, 1822 (1995).Google Scholar
5. Abstreiter, G., Brugger, H., Wolf, T., Jorke, H., and Herog, H. J., Phys. Rev. Lett. 54, pp. 2441 2444 (1985).Google Scholar
6. Meyerson, B.S., Uram, K.J. and LeGoues, F.K., Appl. Phys. Lett. 53, 2555 (1988).Google Scholar
7. Ismail, K., Arafa, M., Saenger, K. L., Chu, J.O., and Meyerson, B.S., Appl. Phys. Lett. 66, 1077 (1995).Google Scholar
8. Iyer, S. S., Patton, G. L., Stork, J.M.C., Meyerson, B. S., and Harame, D. L., IEEE Trans. Electron Devices 36, 2043 (1989).Google Scholar
9. Harame, D. L., Comfort, J. H., Cressler, J. D., Crabbé, E. F., Sun, J. Y.-C., Meyerson, B. S., and Tice, T., IEEE Trans. Electron Devices 42, 455 (1995); IEEE Trans. Electron Devices42, 469 1995.Google Scholar
10. Cressler, J.D., IEEE Spectrum 32, 49 (1995).Google Scholar
11. Long, J. R., Copeland, M. A., Kovacic, S. J., Malhi, D. S., Harame, D. L., and Wuorinen, J. H., 1996 IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, (San Francisco, CA), 82, 423.Google Scholar
12. Pearsall, T. P., CRC Critical Rev. Solid State Material Sci. 15, 551 (1989).Google Scholar
13. Welser, J., Hoyt, J. L., and Gibbons, J. F., IEDM Tech. Dig., 1000 1992; IEEE Trans. Electron Devices 40, 2101 (1993); IEDM Tech. Dig., 545 (1993).Google Scholar
14. Welser, J., Hoyt, J. L., Takagi, S., and Gibbons, J. F., IEDM Tech. Dig., 373 (1994).Google Scholar
15. Rim, K., Welser, J., Hoyt, J. L., and Gibbons, J. F., IEDM Tech. Dig., 517 (1995).Google Scholar
16. Takagi, S., Hoyt, J.L., Welser, J.J., and Gibbons, J.F., J. Appl. Phys. 80, 1567 (1996).Google Scholar
17. Bhaumik, K., Shacham-Diamand, Y., Noël, J.-P., Bevk, J., and Feldman, L.C., IEEE Trans. Electron Devices 43, 1965 (1996).Google Scholar
18. Rieger, M. M. and Vogl, P., Phys. Rev. B 48, 14276 (1993).Google Scholar
19. Formicone, G.F., Vasileska, D., and Ferry, D.K., Solid-State Electronics 41, 879 (1997).Google Scholar
20. Yamada, T., Zhou, J.-R., Miyata, H., and Ferry, D.K., IEEE Trans. Electron Devices 41, 1513 (1994).Google Scholar
21. Formicone, G. F., Vasileska, D., and Ferry, D. K., Phys. Stat. Sol. (b) 204, 531 (1997).Google Scholar
22. Zhou, J.-R., and Ferry, D. K., IEEE Trans. Electron Devices 39, 473 (1992).Google Scholar
23. Zhou, J.-R., and Ferry, D.K., IEEE Trans. Electron Devices 40, 421 (1993).Google Scholar
24. Jacoboni, C., and Reggiani, L., Rev. Mod. Phys. 55, 645 (1983).Google Scholar
25. Ferry, D. K., Semiconductors(Macmillan Publishing Company, New York, 1991).Google Scholar
26. Herring, C. and Vogt, E., Phys. Rev. 101, 944 (1956).Google Scholar
27. Ridley, B. K., Quantum Processes in Semiconductors(Oxford University PressInc., New York, 1993).Google Scholar
28. Miyata, H., Yamada, T. and Ferry, D. K., Appl. Phys. Lett. 62, 2661 (1993).Google Scholar
29. Yamada, T. and Ferry, D. K., Solid-State Electronics 38, 881 (1995).Google Scholar
30. Hockney, R. W. and Eastwood, J. W., Computer Simulation Using Particles (McGraw-Hill, Maidenhead, 1981).Google Scholar
31. Lugli, P., IEEE Trans. Computer-Aided Design 9, 1164 (1990).Google Scholar
32. Laux, S. E., IEEE Trans. CAD Integr. Circ. Syst. 15, 1266 (1996).Google Scholar
33. Ismail, K., Meyerson, B. S., Rishton, S., Chu, J., Nelson, S., and Nocera, J., IEEE Electron Device Lett. 13, 229 (1992).Google Scholar
34. Fischetti, M.V., and Laux, S.E., Phys. Rev. B 38, 9721 (1988).Google Scholar