Article contents
Carrier Dynamics of Abnormal Temperature-Dependent Emission Shift in Mocvd-Grown InGaN Epilayers and InGaN/GaN Quantum Wells
Published online by Cambridge University Press: 10 February 2011
Abstract
Temperature-dependent photoluminescence (PL) studies have been performed on InGaN epilayers and InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic chemical vapor deposition. We observed anomalous temperature dependent emission behavior (specifically an S-shaped decrease-increase-decrease) of the peak energy (EpL) of the InGaN-related PL emission with increasing temperature. In the case of the InGaN epilayer, EPL decreases in the temperature range of 10 - 50 K, increases for 50 - 110 K, and decreases again for 110 - 300 K with increasing temperature. For the InGaN/GaN MQWs, EPL decreases from 10 - 70 K, increases from 70 - 150 K, then decreases again for 150 - 300 K. The actual temperature dependence of the PL emission was estimated with respect to the bandgap energy determined by photoreflectance spectra. We observed that the PL peak emission shift has an excellent correlation with a change in carrier lifetime with temperature. We demonstrate that the temperature-induced S-shaped PL shift is caused by the change in carrier recombination dynamics with increasing temperature due to inhomogeneities in the InGaN structures.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999
References
- 2
- Cited by