Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T15:11:32.648Z Has data issue: false hasContentIssue false

Carbon Powders Prepared in Rf Thermal Plasma and Their Application to Anode of Lithium Secondary Baltery

Published online by Cambridge University Press:  10 February 2011

M. Kurihara
Affiliation:
TDK Coporation, R&D Center, 2–15–7 Higashi-Ohwada, Ichikawa, Chiba 272-8558, Japan
S. Uchida
Affiliation:
TDK Coporation, R&D Center, 2–15–7 Higashi-Ohwada, Ichikawa, Chiba 272-8558, Japan
S. Maruyama
Affiliation:
TDK Coporation, R&D Center, 2–15–7 Higashi-Ohwada, Ichikawa, Chiba 272-8558, Japan
T. Takizawa
Affiliation:
Hosei University, Department of Materials Science, 3-7-2 Kajino-cho, Koganei, Tokyo 184-0002, Japan
Y Moriyoshi
Affiliation:
Hosei University, Department of Materials Science, 3-7-2 Kajino-cho, Koganei, Tokyo 184-0002, Japan
T Ishigaki
Affiliation:
NIRIM, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Y Sato
Affiliation:
NIRIM, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
Get access

Abstract

Carbon powders prepared by the RF thermal plasma treatment of phenolic resin were examined for the anode materials of lithium secondary battery. Modification of these carbon powders in chemical composition, crystal structure and surface morphology was characteristics of the thermal plasma treatment The treated powders showed the unique microstructure. TEM observation showed the non-uniform distribution of graphitized and amorphous areas in the particles. The electrochemical measurements as an anode for lithium secondary battery were examined in IM LiClO4 in a 50:50 mixture of ethylene carbonate and diethyl carbonate. While the electrochemical extraction of lithium ion from plasma-prepared carbon powders proceeded in three stages, the electrochemical insertion looked to proceed in two stages. These electrochemical features can be associated with the uncommon microstructure characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, K., Noguchi, M., Demachi, A., Oki, N. and Endo, M., Science, 264, 556 (1994).Google Scholar
2. Way, B.M. and Dahn, J.R., J. Electrochem. Soc., 141, 907 (1994).Google Scholar
3. Mabuchi, A., Tokumitsu, K., Fujimoto, H. and Kasuh, T., J Electrochem. Soc., 142, 1041 (1995).Google Scholar
4. Dahn, J. R., Zheng, T., Liu, Y. and Xue, J.S., Science, 270, 590 (1995).Google Scholar
5. Disma, F., Aymard, L., Dupont, L. and Tarascon, J.-M., J. Electrochem. Soc., 143,3959(1996).Google Scholar
6. Ein-Eli, Y. and Koch, V.R., J. Electrochem. Soc., 144, 2968 (1997).Google Scholar
7. Kikuchi, M., Ikezawa, Y. and Takamura, T., J. Electroanal. Chem., 396, 45 (1995).Google Scholar
8. Nakajima, T. and Koh, M., Denki Kagaku, 64, 917 (1996).Google Scholar
9. Ishigaki, T., Jurewicz, J., Tanaka, J., Noriyoshi, Y. and Boulos, M.I., J. Mater Sci, 30, 883 (1995).Google Scholar
10. Kurihara, M., Manyama, S., Ohe, K. and Ishigaki, T., Chem. Let., 1998, 715.Google Scholar
11. Ishigaki, T., Moriyoshi, Y., Watanabe, T. and Kanzawa, A., J. Mater Res., 11, 2811 (1996).Google Scholar
12. Fong, R., Sacken, U. von and Dahn, J.R., J. Electrochem. Soc., 137, 2009 (1990).Google Scholar
13. Ohzuku, T., Iwakoshi, Y. and Sawai, K., J. Electrochem. Soc., 140, 2490(1993).Google Scholar
14. Zheng, T., MacKinnin, W.R. and Dahn, J.R., J. Electrochem. Soc., 143, 2137 (1996).Google Scholar