Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:50:18.788Z Has data issue: false hasContentIssue false

Carbon Nanotube Electron Sources for Electron Microscopes

Published online by Cambridge University Press:  01 February 2011

Niels de Jonge
Affiliation:
Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands.
Jim T. Oostveen
Affiliation:
Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands.
Theo van Rooij
Affiliation:
Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands.
Myriam Allioux
Affiliation:
Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands.
Maya Doytcheva
Affiliation:
Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands.
Monja Kaiser
Affiliation:
Philips Research, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands.
Kenneth B. K. Teo
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom.
Rodrigo G. Lacerda
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom.
William I. Milne
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom.
Get access

Abstract

High-quality electron sources can be made from individual multi-walled carbon nanotubes. A process was developed allowing the control over 1) the length of the fraction of the nanotube protruding from the support tip, 2) the contact length of the nanotube with the support tip, 3) the diameter of the nanotube. In addition, the cap of the nanotube was closed and the nanotube was cleaned thoroughly. The field emission model successfully describes the electron emission process of these electron sources and the work function is 5.1 eV. The emitters show a highly stable emission, as expected on account of the extremely stable structure of the carbon nanotube.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. de Jonge, N., Bonard, J. M., Phil. Trans. R. Soc. Lond. A 362, 22392266 (2004).Google Scholar
2. Choi, W. B., Chung, D. S., Kang, J. H., Kim, H. Y., Jin, Y. W., Tan, I. T., Lee, Y. H., Jung, J. E., Lee, N. S., Park, G. S. and Kim, J. M., Appl. Phys. Lett. 75, 31293131 (1999).Google Scholar
3. Saito, Y., Uemura, S., Carbon 38, 169182 (2000).Google Scholar
4. Sugie, H., Tanemure, M., Filip, V., Iwata, K., Takahashi, K. and Okuyama, F., Appl. Phys. Lett. 78, 25782580 (2001).Google Scholar
5. Yue, G. Z., Qiu, Q., Gao, B., Cheng, Y., Zhang, J., Shimoda, H., Chang, S., Lu, J. P. and Zhou, O., Appl. Phys. Lett. 81, 355357 (2002).Google Scholar
6. de Jonge, N., Lamy, Y., Schoots, K. and Oosterkamp, T. H., Nature 420, 393395 (2002).Google Scholar
7. Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T. and Smalley, R. E., Science 269, 15501553 (1995).Google Scholar
8. de Jonge, N., Lamy, Y. and Kaiser, M., Nano Letters 3, 16211624 (2003).Google Scholar
9. Lacerda, R. G., Teh, A. S., Yang, M. H., Teo, K. B. K., Rupesinghe, N. L., Dalal, S. H., Koziol, K. K. K., Roy, D., Amaratunga, G. A. J., Milne, W. I., Chowalla, M., Hasko, D. G., Wyczisk, F. and Legagneux, P., Appl. Phys. Lett. 84, 269271 (2004).Google Scholar
10. Colbert, D. T., Zhang, J., McClure, S. M., Nikolaev, P., Chen, Z., Hafner, J. H., Owens, D. W., Kotula, P. G., Carter, C. B., Weaver, J. H., Rinzler, A. G. and Smalley, R., Science 266, 12181222 (1994).Google Scholar
11. de Jonge, N., Doytcheva, M., Allioux, M., Kaiser, M., Mentink, S. A. M., Teo, K. B. K., Lacerda, R. G. and Milne, W. I, Adv. Mater. 17, 451455 (2005).Google Scholar
12. de Jonge, N., J. Appl. Phys. 95, 673681 (2004).Google Scholar
13. Hata, K., Takakura, A. and Saito, Y., Surf. Sci. 490, 296300 (2001).Google Scholar
14. Fowler, R. H., Nordheim, L., Proc. Roy. Soc. London A 119, 173181 (1928).Google Scholar
15. Good, R. H., Mueller, E. W., Field Emission, ed. Fluegge, S. (Springer verlag, 1956) pp. 176231.Google Scholar
16. Hawkes, P. W., Kasper, E., Principles of electron optics II: Applied geometrical optics (Academic Press, 1996).Google Scholar
17. Groening, O., Kuettel, O. M., Emmenegger, C., Groening, P. and Schlapbach, L., J. Vac. Sci. Technol. B 18, 665678 (2000).Google Scholar
18. de Jonge, N., Allioux, M., Doytcheva, M., Kaiser, M., Teo, K. B. K., Lacerda, R. G. and Milne, W. I, Appl. Phys. Lett. 85, 16071609 (2004).Google Scholar
19. Gao, R., Pan, Z. and Wang, Z. L., Appl. Phys. Lett. 78, 17571759 (2001).Google Scholar
20. Doytcheva, M., Kaiser, M., Verheijen, M. A., Reyes-Reyes, M., Terrones, M. and de Jonge, N., Chem. Phys. Lett. 396, 126130 (2004).Google Scholar
21. Kruit, P., Jansen, G. H., Space charge and statistical Coulomb effects, ed. Orloff, J. (CRC press, 1997) pp. 275318.Google Scholar
22. Purcell, S. T., Vincent, P., Journet, C. and Binh, V. T., Phys. Rev. Lett. 88, 105502–1–105502–4 (2002).Google Scholar
23. Hainfeld, J. F., scanning electron microscopy 1, 591604 (1977).Google Scholar
24. Crespi, V. H., Chopra, N. G., Cohen, M. L., Zettl, A. and Louie, S.G., Phys. Rev. B 54, 59275931 (1996).Google Scholar
25. Saito, R., Dresselhaus, G. and Dresselhaus, M. S., Physical properties of carbon nanotubes (Imperial college press, 1998).Google Scholar
26. Paulmier, T., Balat-Pichelin, M., Le Queau, D., Berjoan, R. and Robert, J. F., Appl. Surf. Sci. 180, 227245 (2001).Google Scholar