Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:54:40.988Z Has data issue: false hasContentIssue false

Carbon Nanospheres: “Green” Synthesis, Characterization, and Growth Kinetics

Published online by Cambridge University Press:  01 February 2011

Mathilda Doorley
Affiliation:
The University of Memphis, Physics, 226 Manning Hall, Memphis, TN, 38152, United States, 901-678-3115, 901-678-4733
Sanjay R Mishra
Affiliation:
[email protected], The University of Memphis, Physics, Manning Hall, Memphis, TN, 38152, United States
Mohamad Laradji
Affiliation:
[email protected], The University of Memphis, Physics, Manning Hall, Memphis, TN, 38152, United States
Ram K Gupta
Affiliation:
[email protected], Missouri State University, Physics, Astronomy and Materials Science, Springfield, MO, 65897, United States
Kartik Ghosh
Affiliation:
[email protected], Missouri State University, Physics, Astronomy and Materials Science, Springfield, MO, 65897, United States
Get access

Abstract

An attempt is made to understand the growth kinetics of carbon nanospheres (CNS) synthesized using a “green” technique. An aqueous solution of glucose, the precursor, was hydrothermally treated to produce porous CNS with homogeneous size distribution and smooth surfaces. The growth of CNS was studied by evaluating transmission electron microscope images as a function of hydrothermal reaction time and temperatures. Raman spectra revealed the presence of short-ordered graphitic nanostructures in an amorphous carbon matrix. FTIR spectroscopy confirms the carbonization of glucose and shows the presence of surface hydroxyl groups on CNSs. Based on various experimental observations it is proposed that the growth of CNSs is dictated by a reaction-controlled mechanism where long chain glucose-based oligomers bond to the CNS surface. The narrow size distribution and highly hydrophilic surface of these amorphous CNS makes them potential candidates for biomedical applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Isao, M., Chan-Hun, K., and Yozo, K., Carbon, 39, 399 (2001).Google Scholar
2. Endo, M., Kim, C., Nishimura, K., Fujimo, T., and Miyashita, J., Carbon, 38, 183 (2000).Google Scholar
3. Dahn, J. R., Zheng, T., Liu, Y. H., and Xue, J. S., Science, 270, 590 (1995).Google Scholar
4.M. B. Shiflett and Foley, H. C., Science, 285, 1902 (1999).Google Scholar
5. Xia, Y. N., Ggates, B., Yin, Y. D., and Lu, Y., Adv. Mater. 12, 693 (2000).Google Scholar
6. Levesque, A., Binh, V. Thien, Semet, V., Guillot, D., Fillit, R., Brookes, M., Nguyen, T., Thin Solid Films 464–465, 308 (2004).Google Scholar
7. Wal, Randy L. Vander and Tomasek, Aaron J., NASA/TM-2003-212214.Google Scholar
8. Caruso, F., Caruso, R. A., and Mohwald, R. A., Science, 282, 111 (1998).Google Scholar
9. Feather, M. S. and Harris, J. F., Adv. Carbohydr. Chem. Biochem. 28, 1111 (1998).Google Scholar
10. Sun, X. and Li, Y.. Angew. Chem. Int. Ed. Engl. 43, 597 (2004).Google Scholar
11. Yao, C., Shin, Y., Wang, Li-Qiong, Windisch, C. F. Jr, Samuels, W. D., Arey, B. W., Wang, C., Risen, W. M. Jr, and Exarhos, G. J., (not publiahsed).Google Scholar
12. Sakaki, T., Shibata, M., Miki, T., Hirosue, H., Hayashi, N., Bioresour. Technol. 58, 197 (1996).Google Scholar
13. Luijkx, G. C. A., Rantwijk, F. van, Bekkum, H. van, Antal, M. J. Jr., Carbohydrate Res. 272, 191 (1995).Google Scholar
14. Maciel, J. S., Silva, D.A., Haroldo, , Paula, C.B., Paula, R.C.M. de, Eur. Poly. J. 41, 2726 (2005).Google Scholar
15. Hashaikeh, R., Butler, I.S., and Kozinski, J.A., Energy & Fuels, 20, 2743 (2006).Google Scholar
16. Cho, N. H., Veirs, D. K., Ager, J. W. III, Rubin, M. D., and Hopper, C. B., and Bogy, D. B., J. Appl. Phys. 71, 2243 (1992).Google Scholar
17. Ferrari, A. C., Rodil, S. E., and Robertson, J., Phy. Rev. B67, 155306 (2003).Google Scholar
18. Ferrari, A. C., Mat. Res. Soc. Symp. Proc. 675, W11.5.1 (2001).Google Scholar
19. Ferrari, A. C. and Robertson, J., Phys. Rev. B, 61, 14095 (2000).Google Scholar
20. Robertson, J. P. and O'Reilly, E. P., Phys. Rev. B 35, 2946 (1987).Google Scholar
21. Cançado, L. G., Takai, K., Enoki, T.,Endo, M., Kim, Y. A., Mizusaki, H., Jorio, A., Coelho, L. N., Magalhães-Paniago, R., and Pimenta, M. A., Appl. Phys. Lett. 88, 163106 (2006).Google Scholar
22. Luijkx, G. C. A., Rantwijk, F. van, Bekkum, H. van, Antal, M. J. Jr., Carbohydrate Res. 272, 191 (1995).Google Scholar
23. Kabyemela, B. M., Adschiri, T., Malaluan, R.M., Arai, K., Ind. Eng. Chem Res. 38 288 (1999).Google Scholar
24. Titirici, M., Antonietti, M., and Thomas, A., Chem. Mater. 18, 3808 (2006).Google Scholar
25. Wang, Q., Li, H., Chen, L., and Huang, X., Carbon, 39, 2211 (2001).Google Scholar