Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T02:09:06.006Z Has data issue: false hasContentIssue false

Can We Describe phase Transition in Insulators within the Landau PT theory Framework?

Published online by Cambridge University Press:  31 January 2011

David Simeone
Affiliation:
[email protected], CEA/DEN/DANS/DMN/SRMA/LA2M-MFE, Gif sur yvette, France
Gianguido Baldinozzi
Affiliation:
[email protected], CNRS, Institut de Chimie/SPMS-ECP, gif sur yvette, France
Dominique Gosset
Affiliation:
[email protected], CEA/DEN/DANS/DMN/SRMA/LA2M-MFE, Gif sur yvette, France
Laurence Luneville
Affiliation:
[email protected], CEA/DEN/DANS/DM2S/SERMA/LLPR-MFE, gif sur yvette, France
Léo Mazerolles
Affiliation:
[email protected], CNRS, Institut des Sciences Chimiques Seine Amont, thiais, France
Get access

Abstract

Based on studies of simple oxides, this paper demonstrates that the specific energy deposition modes under irradiation induce modifications of materials over different length scales. On the other hand, we show the Landau phase transition theory, widely used to explain the structural stability of materials out of irradiation, can give a general framework to describe the behavior of these oxides under irradiation. The use of X-ray diffraction techniques coupled with the Raman spectroscopy allows defining in a quantitative way the phenomenological parameters leading to predictive results. This paper clearly shows that in two model systems, pure zirconia and spinels, no unexpected new phases are produced in these oxides irradiated at room temperature and with different fluxes. Such a phenomenological approach may be useful to study the radiation tolerance of many crystalline ceramics (e.g. the zirconium based americium ceramics).

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Roberto, Jim, Thomas diaz de la Rubbia, “Basic research needs for advanced nuclear energy systems, DOE report (2006).Google Scholar
[2] Sickafus, K. E. Minervini, L. Grimes, R. W. et al. : Science 289, 748(2000).Google Scholar
[3] Sickafus, K. E. Larson, A. C. Yu, N. et al. : J.M.N. 219, 128(1995).10.1016/0022-3115(94)00386-6Google Scholar
[4] Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W.O. and Major, A. Immobilization of high level nuclear reactor wastes in SYNROC. Nature 278, 219223(1979).Google Scholar
[5] Weber, W. Wang, L. Zhang, Y. jiang, W. Bae, I. NIMB 266, 2797(2008)Google Scholar
[6] Toledano, P. Dimitriev, V. Reconstructive Phase Transition, World Scientific, 1996.Google Scholar
[7] Carpenter, M, Salje, E. Amer. Min. 79, 1068(1994).Google Scholar
[8] Salje, E, Phys. Chem. Min. 15, 336(1988).Google Scholar
[9] for a review on these problems see F Ducastelle, order and phase stability in alloys, NH 1991.Google Scholar
[10] for a review on these problems see Katchaturyan, A. The theory of structural Transformations in Solids, Wiley, 1983.Google Scholar
[11] Martin, G. Bellon, P. Sol. State. Phys., 53-54, 1(1997).Google Scholar
[12] for a recent review on these problems see Martin, G. Bellon, P. CR physique 9, 323(2008).10.1016/j.crhy.2007.11.006Google Scholar
[13] Dunlop, A, Rullier-Albenque, RF, jaouen, C. templier, C, davenas, J. Materials under irradiation, trans Tech Publications 1993.Google Scholar
[14] Simeone, D. Luneville, L. and Both, J. P. EPL, 83(2008) 56002 Google Scholar
[15] Simeone, D. Luneville, L. Phys. Rev. E 81, 021115(2010)Google Scholar
[16] Feldman, L.; Mayer, J. Picraux, S.). Materials Analysis by Ion Channeling, Academic Press 1982.Google Scholar
[17] Simeone, D. Bechade, J. L. Gosset, D. et al. : J. Nuc. Mater. 281, 171(2000)Google Scholar
[18] Simeone, D. Dodane-Thiriet, C., Gossetl, D..: J. Nuc. Mater. 300 151(2002).Google Scholar
[19] Patil, R. and Subbarao, E. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 26, 535(1970).10.1107/S0567739470001389Google Scholar
[20] Simeone, D. Baldinozzi, G. Gosset, D..: Phys. Rev. B 70(2004), 134116.Google Scholar
[21] Baldinozzi, G. Simeone, D, Gosset, D, Monnet, I. Le Caër, S. and Mazerolles, Léo, Phys. Rev. B 74, 132107 (2006).Google Scholar
[22] Simeone, D. Baldinozzi, G. Gosset, D. LeCaër, S., and Mazerolles, L. Phys. Rev. B 70, 134116(2004)Google Scholar
[23] Simeone, D. Baldinozzi, G. Gosset, D. Mazerolles, L. and Thome, L. Mater. Res. Soc. Symp. Proc. Vol. 1043(2008).Google Scholar
[24] Chartier, A. Meis, C. Crocombette, J.P. Weber, W. Corrales, L. Phys. Rev. Lett. 94, 25505(2005).Google Scholar
[25] Pells, G. P.: J.M.N. 155-157, 67(1988)Google Scholar
[26] Pells, G. P. and Phillips, D. C.: J. Mat. Nuc. 80, 207(1979).Google Scholar
[27] Pells, G. P.: Rad. Eff. 64, 71(1982).Google Scholar
[28] Clinard, F. and Hobbs, L.: in Modern problems in condensed matter physics, North-Holland, Amsterdam(1986).Google Scholar
[29] Bourgoin, J. C. and Corbett, J. W.: Rad. Eff. 36, 157(1978).Google Scholar
[30] Belin, R, Martin, P, Valenza, P, Scheinos, A, Inorg chem.. 48, 5376(2009).10.1021/ic900369bGoogle Scholar