Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T09:16:22.705Z Has data issue: false hasContentIssue false

Calculations of Dielectric Constant for AlGaInAs Quaternary Semiconductor Alloy in the Transparent Region and Above (0.4-4.0eV)

Published online by Cambridge University Press:  21 March 2011

M. Linnik
Affiliation:
Department of Materials and Nuclear Engineering and Materials Research Science and Engineering Center, University of Maryland, College Park MD 20742
A. Christou
Affiliation:
Department of Materials and Nuclear Engineering and Materials Research Science and Engineering Center, University of Maryland, College Park MD 20742
Get access

Abstract

The modeling of the spectral behavior of the refractive index of AlGaInAs quaternary IIIV semiconductor alloy in the energy range from 0.4 to 4eV, including the transparent region, is presented. The extended model of interband transition contributions incorporates not only the fundamental absorption edge contribution to the dielectric function, but also contributions from higher energy and indirect transitions. It is demonstrated that indirect energy transitions must be included in the calculations of the complex dielectric function of the material in the transparent region. Indirect transitions from different critical points in the Brillouin zone are treated separately. The comparison between the theoretical refractive indices and the experimental data for AlGaInAs alloy is presented. These calculations have been applied to the design of Bragg mirrors with the highest refractive index contrast for heterostructure lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 “Handbook of Optical Constants of Solids II”, ed. E., Palik, 1991.Google Scholar
2 Broberg, B. and Lindgren, S., J.Appl.Phys. 55(9), 3376 (1984).Google Scholar
3 Wemple, S., and DiDomenico, M., Phys.Rev.B 3(4), 1338 (1971).Google Scholar
4 Djurisic, A., Rakic, A., Kwok, P., Li, E., and Majewski, M., J.Appl.Phys. 85(7), 3638 (1999).Google Scholar
5 Korovin, L., Sov.Phys.Solid State 1, 1202 (1960).Google Scholar
6 Cardona, M., Solid State Physics, Nuclear Physics and Particle Physics (Benjamin, New York, 1968), p.737.Google Scholar
7 Adachi, S., Phys.Rev. 35(14), 7454 (1987).Google Scholar
8 Lin, C. and Meese, J., J.Appl.Phys. 74(10), 6341 (1993).Google Scholar
9 Linnik, M. and Christou, A., to be published in Physica B, 2002.Google Scholar
10 Alibert, C., Skouri, M., Joullie, A., Benouna, M., and Sadiq, S., J.Appl.Phys. 69(5), 3208 (1991).Google Scholar
11 Paskov, P., J.Appl.Phys. 81(4), 1890 (1997).Google Scholar
12 Adachi, S., J.Appl.Phys. 53(8), 5863 (1982).Google Scholar
13 Kelso, S., Aspnes, D., Pollack, M., and Nahory, R., Phys.Rev.B 26(12), 6669 (1982).Google Scholar
14 Dinges, H., Burkhard, H., Nickel, R., and Schlapp, W., Mater.Sci.Engin.B 21, 174 (1993).Google Scholar
15 Mondry, M., Babic, D., Bowers, J., and Coldren, L., IEEE Pton.Techn.Lett. 4(6), 627 (1992).Google Scholar
16 Dinges, H., Burkhard, H., Losch, R., Nickel, H., and Schlapp, W., Appl.Surf.Sci. 54, 477, (1992).Google Scholar
17 Chandra, P., Coldren, L., and Strege, K., Electrn.Lett. 17(1), 6 (1981).Google Scholar
18 “Semiconductors – Basic data”, ed. O., Madelung, 1996.Google Scholar
19 Pickering, C., Garawal, N., Lacefield, D., Piel, J., and Blunt, R., Appl.Surf.Sci. 50, 346 (1991).Google Scholar