Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:50:57.315Z Has data issue: false hasContentIssue false

Calculation of Local Fields for Clusters of Ellipsoids Within the T-Katrix Approach

Published online by Cambridge University Press:  28 February 2011

Manuel Gomez
Affiliation:
Physics Department, University of Puerto Rico, Rio Piedras, Puerto Rico 00931
Luis F. Fonseca
Affiliation:
Escuela de Fisica, Universidad de Costa Rica, San Jose, Costa Rica
Luis Cruz
Affiliation:
Physics Department, University of Puerto Rico, Rio Piedras, Puerto Rico 00931
William Vargas
Affiliation:
Escuela de Fisica, Universidad de Costa Rica, San Jose, Costa Rica
Get access

Abstract

A T-matrix formalism is used to calculate local electric fields around clusters of prolate ellipsoids in the long wavelength regime. The calculations are performed as a function of interparticle distance as well as angle of orientation. The observed red shifts in the resonant wavelengths of the characteristic peaks are shown to obey an exponential relationship as a function of interparticle separation and a sinusoidal relationship as a function of angle of rotation of the ellipsoid. The behavior of the cluster is discussed and the two effects, of separation and rotation, are compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.See for example: Moskovits, N., Rev.Mod.Phys. 57, 783 (1985); H. Reimer and F. Fisher, Phys.Stat.Sol. B 124, 61 (1984).Google Scholar
2. Peterson, B. and Ström, S., Phys.Rev.D 8, 3661 (1973).Google Scholar
3. Claro, F., Phys.Rev.B 30, 4989 (1984).Google Scholar
4. Fuchs, R. and Claro, F., Phys.Rev.B 35, 3722 (1987).Google Scholar
5. Chen, Z., Sheng, P., Weitz, D.A., Lindsay, H.M., Lin, M.Y.. and Meakin, P., Phys.Rev.B. 37, 5232 (1988).Google Scholar
6. Liver, N., Nitzan, A., and Gersten, J.I., Chem. Phys. Lett. 111,449 (1984); N. Liver, A. Nitzan, and K.F. Freed, J. Chem. Phys. 82, 3831 (1985) and therein references.Google Scholar
7. Cruz, L., Fonseca, L.F., and Gomez, M., Phys. Rev.B 40, 7491 (1989).Google Scholar
8. Johnson, P.B. and Chirsty, D.W., Phys.Rev. B 6, 4370 (1972).Google Scholar
9. Waterman, P.C., Phys.Rev.D 3, 825 (1971).Google Scholar
10. Arfken, G., Mathematical Methods of Physicists, Academic Press, New York, 1985, p. 198.Google Scholar
11. Edmonds, A. R., Angular Momentum in Quantum Mechanics, Princeton University Press, 1957.Google Scholar