Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:06:54.420Z Has data issue: false hasContentIssue false

Broadband (0.3∼11THz) reflection spectroscopy using terahertz air photonics

Published online by Cambridge University Press:  31 January 2011

Xiaoyu Guo
Affiliation:
[email protected], Rensselaer Polytechinic Inst., Physics, Troy, New York, United States
I-Chen Ho
Affiliation:
[email protected], Rensselaer Polytechinic Inst., Physics, Troy, New York, United States
Xi-Cheng Zhang
Affiliation:
[email protected], Rensselaer Polytechinic Inst., Physics, Troy, New York, United States
Get access

Abstract

Pulsed THz wave spectroscopy using air as the THz wave emitter with the excitation of femtosecond laser provides intense (>100 kV/cm) and broadband THz waves (usable bandwidth from 0.3 to 11 THz). Using the air-biased-coherent-detection (ABCD) method, air can also coherently detect pulsed THz waves over a broadband spectrum. By utilizing these two technologies, we developed a prototype THz air photonics time-domain reflection spectrometer, and applied it on many materials in normal reflection geometry. Optical properties of CaCO3 crystals and several other samples in the THz range were studied. The system provided a signal-to-noise ratio (SNR) over 1000:1, with 0.1 cm−1 frequency resolution. The results acquired from both transmission and reflection measurements were then compared.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jeon, T.-I. and Grischkowsky, D. Appl. Phys. Lett. 72, 3032 (1998).Google Scholar
2 Mittleman, D. M. Jakobsen, R. H. Neelamani, R. Baraniuk, R. G. and Nuss, M. C. Appl. Phys. B: Lasers Opt. 67, 379 (1998).Google Scholar
3 Cheville, R. A. and Grischkowsky, D. J. Opt. Soc. Am. B 16, 317 (1999).Google Scholar
4 Kemp, M. C. Taday, P. F. Cole, B. E. Cluff, J. A. Fitzgerald, A. J. and Tribe, W. R. Proc. SPIE 5070, 4452 (2003).Google Scholar
5 Chen, Y. Liu, H. Deng, Y. Veksler, D. Shur, M. Zhang, X. -C. Schauki, D. Fitch, M. J. and Osiander, R., Proc. SPIE 5411, 18 (2004).Google Scholar
6 Yamamoto, K. Yamaguchi, M. Miyamaru, F. Tani, M. Hangyo, M. Ikeda, T. Matsushita, A. Koide, K. Tatsuno, M. and Minami, Y., Jpn. J. Appl. Phys. 43, 414417 (2004).Google Scholar
7 Huang, F. Schulkin, B. Altan, H.; Federici, J. F. Gary, D. Barat, R. Zimdars, D. Chen, M. and Tanner, D. B. Appl. Phys. Lett. 85, 55355537 (2004).Google Scholar
8 Mittleman, D. M. Hunsche, S. Boibin, L. and Nuss, M. C. Opt. Lett. 22, 904 (1997).Google Scholar
9 Liu, H.-B. Chen, Y. Bastiaans, G. J. and Zhang, X.-C. Opt. Expr. 14, 415 (2006).Google Scholar
10 Huang, S Y, Wang, Y X J, WYeung, D K, Ahuja, A T, Zhang, Y-T and Pickwell-MacPherson, E, Phys. Med. Biol. 54, 149160 (2009).Google Scholar
11 Lu, X. Han, J. and Zhang, W. Appl. Phys. Lett. 92, 121103 (2008).Google Scholar
12 Grischkowsky, D. et al. , J. Opt. Soc. Am. B 7, 2006 (1990).Google Scholar
13 Wu, Q. and Zhang, X.-C. Appl. Phys. Lett. 67, 3523 (1995).Google Scholar
14 Xie, X. Dai, J. and Zhang, X.-C. Phys. Rev. Lett. 96, 075005 (2006).Google Scholar
15 Karpowicz, N. and Zhang, X.-C. Phys. Rev. Lett. 102, 093001 (2009).Google Scholar
16 Karpowicz, N. Dai, J. Lu, X. Chen, Y. Yamaguchi, M. Zhao, H. Zhang, X. -C. Price-Gallagher, M., Fletcher, C. Mamer, O. Lesimple, A. and Johnson, K. Appl. Phys. Lett. 92, 011131 (2008).Google Scholar
17 Dai, J. Xie, X. and Zhang, X.-C. Phys. Rev. Lett. 97, 103903 (2006).Google Scholar
18 Palik, Edward D. Handbook of Optical Constants of Solids. Elsevier. (1998).Google Scholar