Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:33:44.374Z Has data issue: false hasContentIssue false

Broad Bandwidth Study of the Topography of the Fracture Surface of Energetic Materials

Published online by Cambridge University Press:  28 February 2011

M. Yvonne D. Lanzerotti
Affiliation:
US Army ARDEC, Picatinny Arsenal, NJ 07806-5000
James J. Pinto
Affiliation:
US Army ARDEC, Picatinny Arsenal, NJ 07806-5000
Allan Wolfe
Affiliation:
Department of Physics, New York City Technical College, Brooklyn, NY 11021
Get access

Abstract

The Z,X coordinates of the fracture surfaces of TNT have been measured witha stylus profilometer. The fracture surfaces of the material under study are obtained by accelerating prepared samples in anultracentrifuge. When the tensile or shear strength is exceeded a fracture surface is obtained. Usingdiamond and sapphire styli the topography of the fracture surface has been studied from a wavelength of 1.0 micron to nearly 1.0 centimeter. The powerspectra have been calculated from the data using a prolate spheroidal data window in the horizontal space domain prior to the employment of the fast Fourier transform algorithm. The power spectra are found to decrease with increasing spatial frequency. Peaks are observed in the low frequency region of the power spectra and indicate that much of the fracture is occurring atgrain boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lanzerotti, M. Y. D. and Pinto, J., “Fractal Dimension of Fracture Surfaces of Energetic Materials”, in Fractal Aspects of Materials II, Schaefer, D. W., Laibowitz, R. B., Mandelbrot, B. B., and Liu, S. H., Eds., (Materials Research Society, Pittsburgh, PA, 1986), pp. 133–4.Google Scholar
2. Lanzerotti, M. Y. D. and Pinto, J., Bull. Am. Phys. Soc. 32, 937 (1987).Google Scholar
3. Lanzerotti, M. Y. D., Pinto, J. and Wolfe, A., “Fractal Characteristics of Fracture Surfaces of Energetic Materials”, in Fractal Aspects of Materials: Disordered Systems, EA-13, Hurd, A. J., Weitz, D. A., and Mandelbrot, B. B., Eds., (Materials Research Society, Pittsburgh, PA, 1987), p. 30.Google Scholar
4. Lanzerotti, M. Y. D., Pinto, J. J., and Wolfe, A., “Fractal Properties of Fracture Surfaces of Energetic Materials”, 1988 Army Science Conference, Fort Monroe, VA.Google Scholar
5. Brown, S. R. and Scholz, C. H., J. Geophys. Res. 90, 12, 575 (1985).Google Scholar
6. Lanzerotti, M. Y. D. and Sharma, J., “Brittle Behavior of Explosives During High Acceleration”, Appl. Phys. Lett. 39, 455 (1981).Google Scholar
7. Lanzerotti, M. Y. D., “Fracture Phenomena of Energetic Materials During High Acceleration”, in Proc. Symposium on Thermomechanical Properties of Energetic Materials and Their Effects on Munitions Survivability, Vol. II, (Naval Weapons Center, China Lake, CA, March 1985), pp. 143.Google Scholar
8. Lanzerotti, M. Y. D., “Mechanical Behavior of Gun Propellant During High Acceleration”, in Proc. 21st JANNAF Combustion Meeting, Vol. 1, (Johns Hopkins University, Laurel, MD, 1984), pp. 275280.Google Scholar
9. Lanzerotti, M. Y. D. and Pinto, J., “Chemical Reaction of Energetic Materials During High Acceleration”, in Shock Waves in Condensed Matter, Gupta, Y. M., Ed., (Plenum Publishing Corp., New York, 1986), pp. 909916.Google Scholar
10. Hunter, A. G. M. and Smith, E. A., Wear, 59, 383 (1980).Google Scholar
11. Thomas, T. R., “Stylus Instruments”, in Rough Surfaces, Thomas, T. R., Ed., (Longman, London, 1982), p. 16.Google Scholar
12. Thomson, D. J., Spectral Analysis of Short Series, Ph. Dissertation, D., Department of Electrical Engineering, Polytechnic Institute of Brooklyn, Brooklyn, NY, 1971.Google Scholar
13. Thomson, D. J., Proc. IEEE, 70, 1055 (1982).Google Scholar
14. Thomson, D. J., Robbins, M. F., Maclennan, C. F., and Lanzerotti, L. J., Physics of the Earth and Planetary Interiors, 12, 217 (1976).Google Scholar
15. Mandelbrot, B. B., The Fractal Geometry of Nature (Freeman, New York, 1983); also Fractals (Freeman, New York, 1977).Google Scholar
16. Mandelbrot, B. B., Physics Scripta, 32, 257260, 1985.Google Scholar
17. Jordan, D. L., Hollins, R. C., and Jakeman, E., Appl. Phys., B31, 179186, (1983).Google Scholar
18. Passoja, D. E. and Amborski, D. J., Microstructural Science, 6, 143 (1978).Google Scholar
19. Passoja, D. E. and Psioda, J. A., “Fourier Transform Techniques -Fracture and Fatigue”, in Fractography and Materials Science, ASTM STP 733, Gilbertson, L. N. and Zipp, R. D., Eds., (American Society for Testing and Materials, Philadelphia, PA, 1981), pp. 355386.Google Scholar
20. Bevington, P. R., Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969), p. 310.Google Scholar
21. Sayles, R. S. and Thomas, T. R., Nature, 271, 431 (1978).Google Scholar