Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T14:34:33.601Z Has data issue: false hasContentIssue false

Branched Thiophene Oligomer/Polymer Bulk Heterojunction Organic Solar Cell

Published online by Cambridge University Press:  28 May 2015

Francisco Martinez
Affiliation:
Dpto. Ciencia de Materiales, Facultad de Ciencias Físicas y Matemáticas. Universidad de Chile, Santiago, Chile
Gloria Neculqueo
Affiliation:
Dpto. Ciencia de Materiales, Facultad de Ciencias Físicas y Matemáticas. Universidad de Chile, Santiago, Chile
Sergio O. Vasquez
Affiliation:
Dpto. Ciencia de Materiales, Facultad de Ciencias Físicas y Matemáticas. Universidad de Chile, Santiago, Chile
Helge Lemmetyinen
Affiliation:
Dpt. Bioengineering and Chemical Dept. Tampere University of Technology, Tampere, Finland
Alexander Efimov
Affiliation:
Dpt. Bioengineering and Chemical Dept. Tampere University of Technology, Tampere, Finland
Paola Vivo
Affiliation:
Dpt. Bioengineering and Chemical Dept. Tampere University of Technology, Tampere, Finland
Get access

Abstract

Thiophene small novel branched structures have been proposed as candidates for dopant agents transporting holes-electron in organic solar cell (OSC). Low-band gap of these branched oligotiophene have been obtained to be used in organic solar cells. Two branched thiophene oligomers, a sexithienylene vinylene (E)-Bis-1,2-(5,5´´-Dimethyl-(2,2´:3´,2´´-terthiophene) vinylene, (BSTV) and octathienylene vinylene (BOTV) (E)-Bis-1,2-(5,5´´´-Dimethyl-(2,2´:5´,2´´:3´,2´´´-tetrathiophene) vinylene oligomers, have been synthesized and used as electron donor or dopant in a bulk heterojunction poly(3-hexylthiophene) (P3HT), /[6,6]-phenyl C61-butyric acid methylester (PCBM), Organic Photovoltaic cell.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jean-Michel Nunzi, C. R. Physique 3, 523542(2002).CrossRefGoogle Scholar
Su, Yu-Wei, Lan, Shang-Che, Wei, Kung-Hwa, Material Today, Volume 15, Issue 12, 554562(2012).CrossRefGoogle Scholar
Abdulrazzaq, Omar A., Saini, Viney, Bourdo, Shawn, Dervishi, Enkeleda and Biris, Alexandru S., Particulate Science and Technology: An International Journal. Volume 31, Issue 5, pp.427442(2013).CrossRefGoogle Scholar
Yu, Junsheng, Zheng, Yifan and Huang, Jiang, Polymers 6, 24732509(2014).CrossRefGoogle Scholar
Venla, M., Manninen, Juha P., Heiskanen, Kimmo M., Kaunisto, Osmo E., Hormi, O. and Lemmetyinen, Helge J., RSC Adv., 4, 88468855(2014).Google Scholar
Bernède, J. C., J. Chil. Chem. Soc. 53, 15491564(2008).CrossRefGoogle Scholar
Krebs, F. C., Sol. Energy Mater. Sol. Cells 93, 394(2009).CrossRefGoogle Scholar
Kumar, P. and Chand, S., Prog. Photovolt: Res. Appl., 20, 377(2012).CrossRefGoogle Scholar
Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J., Science 270, 17891791(1995).CrossRefGoogle Scholar
Mishra, A., Bäuerle, P., Angew. Chem. Int. Ed. 51, 20202067(2012).CrossRefGoogle Scholar
Fitzner, R., Elschner, C., Weil, M., Uhrich, C., Körner, C., Riede, M., Leo, K., Pfeiffer, M., Reinold, E., Mena-Osteritz, E., Bäuerle, P., Adv. Mater. 24, 675(2012).CrossRefGoogle Scholar
Zhang, W ; Hu, R. ; Huo, M.M ;,Ai, X. C.; Zhang, J.P., J. Phys. Chem. C 116, 42984310(2012).CrossRefGoogle Scholar
Chen, H.; Zang, H.; Hu, B.; Daduum, M.; Adv. Funct. Mater. 23, 17011710(2013).CrossRefGoogle Scholar
Bertho, S.; Janssen, J.;Cleij, T.J.; Conings, B.; Moons, W.; Gadissa, A.;D´Haen, J.; Goaverts, E.; Lutsen, L.; Manca, J.; Sol.Energ. Mater. Sol. Cells 92,753760(2008).CrossRefGoogle Scholar