Published online by Cambridge University Press: 25 February 2011
The problem of defining bound water in a cement paste is discussed; a reasonable definition is one that includes interlayer water in C-S-H and AFm phases, structural water in ettringite, and adsorbed water, but not water in micropores or in larger pores. On this basis, structural considerations indicate a value of around 32% on the ignited weight for a fully hydrated paste. ‘Non-evaporable’ water, typically around 22% on the ignited weight at full hydration, cannot be identified with bound water, because dehydration to the state in which only non-evaporable water remains causes major loss of interlayer water and destruction of ettringite. In the interpretation of pore solution data, the definition of bound water, and the value assumed for this quantity, are important, because the ionic concentrations in the pore solution are greatly affected by the volume of free water available to dissolve them. If cement is partially replaced by low calcium fly ash, the quantity of bound water at any given age is substantially reduced. This effect contributes to the relatively low concentrations of alkali metal and hydroxyl ions that are observed in the pore solutions of many portland-fly ash cement pastes.