No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
A novel hierarchical biomaterial capable of incorporating any biotinylated biomolecule has been created. Our strategy is to biotinylate one-dimensional electroactive polymers and use a bridging streptavidin protein on Langmuir-Blodgett (LB) organized films. The following copolymeric system which enables functionalization of other molecules and formation of good monolayers was employed. Biotinylated poly(3-methanolthiophene-co-3-undecylthiophene) (B-PMUT) demonstrated a significantly better isotherm implying superior molecular packing compared to poly(3-methanolthiophene-co-3-undecylthiophene) (PMUT) on the LB airwater surface. The isotherm showed significant area expansion when streptavidin was injected below the B-PMUT monolayer in 0.1mM NaH2PO4/0.1 M NaCl buffer (pH 6.8) subphase. We then incorporated biotinylated phycoerythrin (B-PE) into this novel biomaterial by binding the unoccupied biotin binding sites on the bound streptavidin (4 sites total). The pressure-area isotherm of the protein injected monolayer showed area expansion. A characteristic fluorescent emission peak at 576nm was detected from the monolayer transferred onto a solid substrate. These observations demonstrated the function of B-PMUT in hierarchical monolayer assembly of molecules incorporating the biotin / streptavidin interaction.