Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-06T06:58:08.778Z Has data issue: false hasContentIssue false

Biomimetic Spinning of Recombinant Silk Proteins

Published online by Cambridge University Press:  31 January 2011

David Keerl
Affiliation:
[email protected], Universitaet Bayreuth, Biomaterialien, Bayreuth, Germany
John George Hardy
Affiliation:
[email protected], Universitaet Bayreuth, Biomaterialien, Bayreuth, Germany
Thomas Scheibel
Affiliation:
[email protected], Universitaet Bayreuth, Biomaterialien, Bayreuth, Germany
Get access

Abstract

In the past, we have successfully designed and produced a variety of engineered spider silk-like proteins (eADF3 and eADF4) based upon the primary sequence of the natural dragline proteins ADF3 and ADF4 from the spider Araneus diadematus [1]. Genetically engineered spider silk proteins can be modified at the molecular level to optimize the biochemical and mechanical properties of the final product. Although engineered spider silk proteins can be processed into fibers using different spinning methods, our group is interested in the technical realization of a biomimetic approach. Here, we present an overview over our biomimetic fiber production process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Huemmerich, D. Helsen, C. W. Quedzuweit, S. Oschmann, J. Rudolph, R. Scheibel, T. Biochemistry 2004, 43, 1360413612.Google Scholar
[2] Heim, M. Keerl, D. Scheibel, T. Angewandte Chemie-International Edition 2009, 48, 35843596.Google Scholar
[3] Gerritsen, V. B. Protein Spotlight 2002, 24, 12.Google Scholar
[4] Vollrath, F. J Biotechnol 2000, 74, 6783.Google Scholar
[5] Romer, L. Scheibel, T. in Fibrous Proteins (Ed.: Scheibel, T.), Landes Bioscience, Austin, 2008.Google Scholar
[6] Scheibel, T. Microb Cell Fact 2004, 3, 14.Google Scholar
[7] Vollrath, F. Knight, D. P. Nature 2001, 410, 541548.Google Scholar
[8] Work, R. W. Textile Research Journal 1976, 46, 485492.Google Scholar
[9] Fox, L. R. Annual Review of Ecology and Systematics 1975, 6, 87106.Google Scholar
[10] Vendrely, C. Scheibel, T. Macromol Biosci 2007, 7, 401409.Google Scholar
[11] Karatzas, C. N. Turner, J. D. Karatzas, A.L. 1999 Google Scholar
[12] Schmidt, M. Romer, L. Strehle, M. Scheibel, T. Biotechnology Letters 2007, 29, 17411744.Google Scholar
[13] Vollrath, F. Knight, D. P. Hu, X. W. Proc. R. Soc. Lond., Ser. B: Biol. Sci. 1998, 265, 817820.Google Scholar
[14] Vollrath, F. Knight, D. P. Int. J. Biol. Macromol. 1999, 24, 243249.Google Scholar
[15] Lazaris, A. Arcidiacono, S. Huang, Y. Zhou, J. F. Duguay, F. Chretien, N. Welsh, E. A. Soares, J. W. Karatzas, C. N. Science 2002, 295, 472476.Google Scholar
[16] Viney, C. in Structural Biological Materials: Design and Structure-Property Relationships, Vol. 10 (Ed.: Elices, M.), American Chemical Society, Washington D.C., 2000, pp. 295333.Google Scholar
[17] Viney, C. Huber, A. E. Dunaway, D. L. Kerkam, K. Case, S. T. in Silk Polymers. Materials Science and Biotechnology (Eds.: Kaplan, D. L. Adams, W. W. Farmer, B. Viney, C.), American Chemical Society, Washington D.C., 1994, pp. 120136.Google Scholar
[18] Rammensee, S. Slotta, U. Scheibel, T. Bausch, A. R. Proceedings of the National Academy of Sciences of the United States of America 2008, 105, 65906595.Google Scholar
[19] Slotta, U. Rammensee, S. Gorb, S. Scheibel, T. Angewandte Chemie-International Edition 2008, 47.Google Scholar
[20] Vollrath, F. Knight, D. P. WO 01/38614 A1, 1999 Google Scholar
[21] Scheibel, T. Hummerich, D. (Technische Universitaet Muenchen), WO 2007/031301 A3, 2007 Google Scholar
[22] Exler, J. H. Hummerich, D. Scheibel, T. Angewandte Chemie-International Edition 2007, 46, 35593562.Google Scholar