Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T03:25:31.477Z Has data issue: false hasContentIssue false

Bio-Inspired Submicron Electrodes

Published online by Cambridge University Press:  10 February 2011

Ivan Stanish
Affiliation:
Center for Bio/Molecular Science and Engineering Naval Research Laboratory, Code 6930 Washington DC, 20375
Daniel A. Lowy
Affiliation:
Nova Research, Inc. 1900 Elkin St., Alexandria, VA 22308
Alok Singh
Affiliation:
Nova Research, Inc. 1900 Elkin St., Alexandria, VA 22308
Get access

Abstract

Immobilized polymerized electroactive vesicles (IPEVs) are submicron biocapsules capable of storing charge in confined environments and chemisorbing on surfaces. Methods to immobilize stable submicron sized electroactive vesicles and the means to measure electroactivity of IPEVs at nanolevels have been demonstrated. IPEVs can withstand steep potential gradients applied across their membrane, maintain their structural integrity against surfaces poised at high/low electrical potentials, retain electroactive material over several days, and reversibly mediate (within the membrane) electron flow between the electrode surface and vesicle interior. IPEVs have strong potential to be used for charge storage and electron coupling applications that operate on the submicron scale and smaller.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ringsdorf, H., Schlarb, B. and Venzmer, J., Angew. Chem. Int. Ed. Engl. 27, 113 (1988).Google Scholar
2. Lasic, D. D., Liposomes: from physics to applications (Elsevier, New York, 1993).Google Scholar
3. Lasic, D.D. and Papahadjopoulos, D. Medical Applications of Liposomes (Elsevier, New York, 1993).Google Scholar
4. Gregoriadis, G., Ed., Liposome Technology, Vol. 1-3 (CRC Press, Boca Raton, 1993).Google Scholar
5. Katz, M., Kolushev, S., Tsubery, H., Fridkin, M. and Jelinek, R., Biochem-US 40, 204 (2001).Google Scholar
6. Sackmann, E., Science 271, 43 (1996).Google Scholar
7. Stanish, I., Santos, J. P. and Singh, A., J. Am. Chem. Soc. 123, 1008 (2001).Google Scholar
8. Stanish, I., Ray, R. I. and Singh, A., Mat. Res. Soc. Symp. Proc. 711, 101 (2002).Google Scholar
9. Shibata-Seki, T., Masai, J., Tagawa, T., Sorin, T. and Kondo, S., Thin Solid Films 273, 297 (1996).Google Scholar
10. Katagiri, K., Hamasaki, R., Ariga, K. and Kikuchi, J.I., J. Am. Chem. Soc. 124, 7892 (2002).Google Scholar
11. Ciobanu, M., Wilburn, J. P., Buss, N. I., Ditavong, P. and Lowy, D. A., Electroanalysis 14, 989 (2002).Google Scholar
12. Reimhult, E., Hook, F. and Kasemo, B., Langmuir 19, 1681 (2003).Google Scholar
13. Ha, T. H. and Kim, K., Langmuir 17, 1999 (2001).Google Scholar
14. Stanish, I., Lowy, D. A., Lee, Y., Fang, J., Wong, E., Ray, R. I. and Singh, A., J. Am. Chem. Soc. (submitted)Google Scholar
15. Karlsson, M., Nolkrantz, K., Davidson, M. J., Stromberg, A., Ryttsen, F., Akerman, B. and Orwar, O., Anal. Chem. 72, 5857 (2000).Google Scholar
16. Stanish, I., Lowy, D. A., Tender, L. M. and Singh, A., J. Phys. Chem. B 106, 3503 (2002).Google Scholar
17. Robinson, J. N. and Cole-Hamilton, D. J., Chem. Soc. Rev. 20, 49 (1991).Google Scholar
18. Hinkle, P. C., Federation Proc. 32, 1988 (1973).Google Scholar
19. Stanish, I. and Singh, A., Mat. Res. Soc. Symp. Proc. 711, 333 (2002).Google Scholar