Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T18:27:30.171Z Has data issue: false hasContentIssue false

Biogenic Inspiration for the Controlled Nucleation and Growth of Inorganic Materials

Published online by Cambridge University Press:  14 March 2011

Brigid R Heywood
Affiliation:
Crystal Science Group, Lennard-Jones Laboratories, School of Chemistry & Physics, Keele University, Keele, Staffs. ST5 5BG, UK
Susan Hill
Affiliation:
Crystal Science Group, Lennard-Jones Laboratories, School of Chemistry & Physics, Keele University, Keele, Staffs. ST5 5BG, UK
Kate Pitt
Affiliation:
Crystal Science Group, Lennard-Jones Laboratories, School of Chemistry & Physics, Keele University, Keele, Staffs. ST5 5BG, UK
Paul Tibble
Affiliation:
Crystal Science Group, Lennard-Jones Laboratories, School of Chemistry & Physics, Keele University, Keele, Staffs. ST5 5BG, UK
Stuart Williams
Affiliation:
Crystal Science Group, Lennard-Jones Laboratories, School of Chemistry & Physics, Keele University, Keele, Staffs. ST5 5BG, UK
Get access

Abstract

The development of effective protocols for the control of crystal structure, size and morphology attracts considerable interest given the requirement for particles of modal size and shape in many areas of particle processing and the importance of crystallochemical selectivity in determining the exploitable properties of crystalline solids. In biological systems there are many examples of advanced “crystal engineering” in which materials are deposited in a highly controlled manner to produce crystal phases that are unique with respect to their structure, habit, uniformity of size and texture. A review of biomineralisation will show that while a complex array of strategies have evolved for regulating crystal growth, one feature is common to the biological paradigm. Interactions between supramolecular organic structures and the nascent inorganic solids play a fundamental role in controlling the deposition of the biominerals and ordering the assembly of these units into hierarchical structures. In order to gain a better understanding of the molecular recognition events, which take place at the organic-inorganic interface, a bio-inspired crystal chemical approach has been adopted. For this work organised organic assemblies (e.g. surfactant aggregates, peptide mimics, dendrimers) of precise molecular design (head group identity, packing conformation, primary sequence etc.) are being assayed for their effectiveness in controlling the nucleation and growth of crystals. It is evident from these studies that the chemical organisation of the polymeric microenvironment operates at the molecular level to control certain aspects of the nucleation, growth and stabilisation of inorganic particles. By systematically changing the molecular motif of the organic template we have established that the size, crystallographic orientation, growth and assembly of the mineral phase can be tailored to function. These results have relevance not only to our understanding of biomineralisation but also suggest a multiplicity of exploitable opportunities for the engineering of crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weiner, S. and Addadi, L, J Mat. Chem. 7 689702 (1997)Google Scholar
2. Jeong, B. C., Hawes, C, Bonthrone, K. M. and Macaskie, L. E., Microbiology 143, 24972507 (1997)Google Scholar
3. Konhauser, K.O., FEMS Micobiology Reviews, 20, 315326 (1996); T Klaus, Proc Natl Acad Sci, 96, 13611-13613 (1999)Google Scholar
4. Lowenstam, H. and Weiner, S., ‘On Biomineralisation’ (Oxford University Press 1989)Google Scholar
5. Addadi, L. and Weiner, S., Angew Chemie. Intl. Edn. Engl, 31, 153169 (1992)Google Scholar
6. Mann, S., Nature 365, 499505 (1993)Google Scholar
7. Fernanedez, M. S., Araya, M. and Arias, J. L., Matrix Biology, 16, 1320 (1996)Google Scholar
8. Albeck, S., Addadi, L. and Weiner, S., Conn. Tiss. Res, 34–35, 419424 (1996); M.E. Marsh and D. P. Dickinson, Protoplasma, 199, 9-17 (1998)Google Scholar
9. Butler, W.T, Ritchie, H.H. and Bronckers, A. L. J. J., Ciba Foundation Symposium 205 107117 (1998); A. George, L. Bannon, B. Sabsay, J. W. Dillon, J. Mallone, A. Veis, N. A. Jenkins, D. J. Gilbert and N. G. Copeland, J. Biol. Chem, 271,32869-32873 (1996); K. L. Hirst, K. O'Connor, M. F. Young, and M. J. Dixon, J Dent. Res, 76, 754-760 (1996); M. l. Paine and M. L. Snead, J. Bone Min Res, 12, 221-227 (1997)Google Scholar
10. Powell, A. K., Structure and Bonding, 88, 138 (1996); Kroger, N., R. Deutzmann, M. Sumper, Science, 286, 1129-1130 (1999)Google Scholar
11. Dana, J. W. and Dana, E. S., The System of Mineralogy (Wiley, New York, 1951); R. J. Reeder, Reviews in Mineralogy, 11, 1-47 (1983)Google Scholar
12. Hirst, K. L., Simons, D., Feng, J., Aplin, H., Dixon, M. J. and McDougall, M., Genomics, 42, 3845 (1998)Google Scholar
13. Bianconi, P. A., Lin, J. and Strezelecki, A. R., Nature, 349, 315317 (1991)Google Scholar
14. Brisdon, B., Heywood, B. R., Hodson, A., Mann, S. and Wong, K, Adv. Mat, 5, 449512 (1993)Google Scholar
15. Marentette, J. M., Norwig, J., Stockelmann, E., Meyer, W. H. and Wegner, G., Adv Mat, 9, 647651 (1997)Google Scholar
16. Puricha, N. and Erway, L. C. Dev. Biol, 27, 395405 (1975); A. Bigi, E. Foresti, M. Gandolfi, M Gazzano and N. Roveri, J Inorg Chem, 58, 49-58 (1995); T. Kitijama, M. Tomita, C.E. Killian, K. Akasaka and F. H. Wilt, Dev. Growth Diff, 38, 687-695 (1996)Google Scholar
17. Didymus, J., Mann, S., Sanderson, N. and Heywood, B. R. J Chem Soc, Farad Trans 86, 18731880 (1989)Google Scholar
18. Carlstrom, D., Biol Bull, 125, 441463 (1963)Google Scholar
19. Pote, K. G. and Ross, M., Comp Biochem Physiol 98B, 287295 (1991)Google Scholar
20. Berman, A., Adddadi, L. and Weiner, S. Nature, 331, 546548 (1988)Google Scholar
21. Aizenberg, J., Hanson, J., Koetlze, T F., Leiserowitz, L., Weiner, S. and Addadi, L., Chem Eur J, 7, 414422 (1995)Google Scholar
22. Landau, E. M., Levanon, M., Leiserowitz, L., Lahav, M., and Sagiv, J., Nature, 318, 353356 (1985)Google Scholar
23. Heywood, B. R. and Mann, S., Adv. Mat, 6, 920 (1994)Google Scholar
24. Gaines, G., Insoluble Monolayers at Liquid-Gas Iinterfaces, (Wiley Interscience, New York, 1966)Google Scholar
25. Brinker, J., Nature 394, 256 (1998)Google Scholar
26. Oliver, S., Kuperman, A., Coombs, N., Lough, A. and Ozin, G. Nature 382, 589 (1996)Google Scholar
27. Tanav, K. and Pinnavaia, P., Science 267, 865868 (1995)Google Scholar
28. Yang, H., Coombs, N. and Ozin, G., Nature 386, 692695 (1997)Google Scholar
29. Ulman, A., Introduction of Thin Organic Films; From Langmuir-Blodgett to Self-Assembly (Academic Press, Boston, 1991)Google Scholar
30. Bunker, B., Science, 264, 4855 (1994)Google Scholar
31. Aizenberg, J., Black, A. J., Whitesides, G. M., Nature 394, 868871 (1998)Google Scholar
32. Berman, A., Ahn, D. J., Lio, A, Salmeron, M., Reichart, A and Charych, D, Science 269, 515518 (1995)Google Scholar
33. D'Souza, S. M., Alexander, C., Carr, S. W., Waller, A. M, Whitcombe, M.J. and Wulfson, E. N., Nature 398, 312316 (1999)Google Scholar
34. Fallon, P., Heywood, B. R., Mascal, M. and Williams, S. J., Angew Chemie, in press (2000)Google Scholar
35. Ringsdorf, H., Scharlb, B. and Venzmer, J., Angew Chenie (Intl Ed Engl) 27, 113158 (1988)Google Scholar
36. Tanaka, N., Kitano, H, Ise, N., J Phys Chem, 4, 62906292 (1990)Google Scholar
37. Daon, V., Koppee, R. and Kasai, P. H., J Am Chem Soc, 119, 98109815 (1997)Google Scholar
38. Katalsky, A., Gisenberg, H. and Lifson, S., J Am Chem Soc, 73, 58895890 (1951)Google Scholar
39. Kitano, Y., Bull Chem Soc Jap, 35, 19731980 (1962)Google Scholar
40. Fincham, A. and Summer, J. P., Ciba Foundation Symposium, 205, 118134 (1997)Google Scholar
41. Piane, M. L., Deutsch, D. and Snead, M. L., Conn Tiss Res, 34/35, 211(1996)Google Scholar
42. Tomalia, D. D., Angew. Chem. Int. Ed. Eng 29, 138 (1990)Google Scholar
43. Heywood, B. R., German, C. S., S J Hill and Williams, S.J., J Mat Chem, in press (2000)Google Scholar
44. Heywood, B. R Hill, S.J. and Williams, S.J., Adv Mat, in press (2000)Google Scholar
45. Feast, W.J., Heywood, B.R., Hobson, L, Williams, S.J., J Mat Chem, in press (2000)Google Scholar
46. Kreger, D. R. and Boere, H., Acta Bot Neerl., 18, 143 (1969)Google Scholar
47. Gooday, A. J. and Nott, J. A., J Mar Biol Ass, UK, 62, 595 (1982)Google Scholar
48. Leeden, M. C. Van der, Reedijk, M. C., and Rosmalen, G. M. van, Estudios Geol., 38, 279 (1982)Google Scholar
49. Leeden, M. C. Van der and Rosmalen, G. M van, SPE Production Engineering, 70 (1990)Google Scholar
50. Heywood, B. R. and Mann, S., Langmuir 8, 14921494 (1992)Google Scholar
51. Benton, R. J., Faraday Discussions, 95, 281287 (1993)Google Scholar
52. Davey, R. J., Black, S., Bromley, L. Cottier, L., Dobbs, B. and Rout, L. J Chem Soc, Farad Trans, 87, 34093413 (1991)Google Scholar