Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T08:46:20.187Z Has data issue: false hasContentIssue false

Biocompatible Hybrid Plasmonic-Magnetic Nanoparticles for Bioimaging

Published online by Cambridge University Press:  30 March 2012

G.A. Sotiriou
Affiliation:
Particle Technology Laboratory, [email protected] of Process Engineering, Department of Mechanical and Process Engineering
A.M. Hirt
Affiliation:
Institute of Geophysics, Department of Earth Sciences
P-Y. Lozach
Affiliation:
Institute for Biochemistry, Department of Biology Swiss Federal Institute of Technology (ETH Zurich)
A. Teleki
Affiliation:
Particle Technology Laboratory, [email protected] of Process Engineering, Department of Mechanical and Process Engineering
F. Krumeich
Affiliation:
Particle Technology Laboratory, [email protected] of Process Engineering, Department of Mechanical and Process Engineering
S.E. Pratsinis
Affiliation:
Particle Technology Laboratory, [email protected] of Process Engineering, Department of Mechanical and Process Engineering
Get access

Abstract

Hybrid magnetic/plasmonic nanoparticles possess properties originating from each individual material. Such properties are beneficial for biological applications including bio-imaging, targeted drug delivery, in vivo diagnosis and therapy. Limitations regarding their stability and toxicity, however, challenge their safe use. Here, the one-step flame synthesis of composite SiO2-coated Ag/Fe2O3 nanoparticles is demonstrated. The hermetic SiO2 coating does not influence the morphology, the superparamagnetic properties of the iron oxide particles and the plasmonic optical properties of the silver particles. Therefore, the hybrid SiO2-coated Ag/Fe2O3 nanoparticles exhibit desired properties for their employment in bio-applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. El-Sayed, I. H.; Huang, X. H.; El-Sayed, M. A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer Nano Lett. 2005, 5, 829834.Google Scholar
2. Zeng, H.; Sun, S. H. Syntheses, properties and potential applications of multicomponent magnetic nanoparticles Adv. Funct. Mater. 2008, 18, 391400.Google Scholar
3. Aaron, J.; Travis, K.; Harrison, N.; Sokolov, K. Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling Nano Lett. 2009, 9, 36123618.Google Scholar
4. Jiang, J.; Gu, H. W.; Shao, H. L.; Devlin, E.; Papaefthymiou, G. C.; Ying, J. Y. Bifunctional Fe3O4-Ag heterodimer nanoparticles for two-photon fluorescence imaging and magnetic manipulation Adv. Mater. 2008, 20, 44034407.Google Scholar
5. Wang, C. G.; Chen, J.; Talavage, T.; Irudayaraj, J. Gold nanorod/Fe3O4 nanoparticle “Nano-pearl-necklaces” for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells Angew. Chem.-Int. Edit. 2009, 48, 27592763.Google Scholar
6. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing Nature Mater. 2005, 4, 435446.Google Scholar
7. Das, G. K.; Tan, T. T. Y. Rare-earth-doped and codoped Y2O3 nanomaterials as potential bioimaging probes J. Phys. Chem. C 2008, 112, 1121111217.Google Scholar
8. Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Fluorescence intermittency in single cadmium selenide nanocrystals Nature 1996, 383, 802804.Google Scholar
9. Singh, S.; D’Britto, V.; Prabhune, A. A.; Ramana, C. V.; Dhawan, A.; Prasad, B. L. V. Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles New J. Chem. 2010, 34, 294301.Google Scholar
10. Lee, K. J.; Nallathamby, P. D.; Browning, L. M.; Osgood, C. J.; Xu, X. H. N. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos ACS Nano 2007, 1, 133143.Google Scholar
11. Lu, A. H.; Salabas, E. L.; Schuth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application Angew. Chem.-Int. Edit. 2007, 46, 12221244.Google Scholar
12. Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles Nano Lett. 2005, 5, 379382.Google Scholar
13. Weissleder, R.; Elizondo, G.; Wittenberg, J.; Rabito, C. A.; Bengele, H. H.; Josephson, L. Ultrasmall superparamagnetic iron-oxide - Characterization of a new class of contrast agents for MR imaging Radiology 1990, 175, 489493.Google Scholar
14. Sotiriou, G. A.; Sannomiya, T.; Teleki, A.; Krumeich, F.; Vörös, J.; Pratsinis, S. E. Non-toxic dry-coated nanosilver for plasmonic biosensors Adv. Funct. Mater. 2010, 20, 42504257.Google Scholar
15. Teleki, A.; Suter, M.; Kidambi, P. R.; Ergeneman, O.; Krumeich, F.; Nelson, B. J.; Pratsinis, S. E. Hermetically coated superparamagnetic Fe2O3 particles with SiO2 nanofilms Chem. Mater. 2009, 21, 20942100.Google Scholar
16. Lim, J.; Eggeman, A.; Lanni, F.; Tilton, R. D.; Majetich, S. A. Synthesis and single-particle optical detection of low-polydispersity plasmonic-superparamagnetic nanoparticles Adv. Mater. 2008, 20, 17211726.Google Scholar
17. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors Nature Mater. 2008, 7, 442453.Google Scholar
18. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics Nature 2003, 424, 824830.Google Scholar
19. Navarro, E.; Piccapietra, F.; Wagner, B.; Marconi, F.; Kaegi, R.; Odzak, N.; Sigg, L.; Behra, R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii Environ. Sci. Technol. 2008, 42, 89598964.Google Scholar
20. Schrand, A. M.; Braydich-Stolle, L. K.; Schlager, J. J.; Dai, L. M.; Hussain, S. M. Can silver nanoparticles be useful as potential biological labels? Nanotechnology 2008, 19, 235104235117.Google Scholar
21. Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing Annu. Rev. Phys. Chem. 2007, 58, 267297.Google Scholar
22. Sotiriou, G. A.; Hirt, A. M.; Lozach, P. Y.; Teleki, A.; Krumeich, F.; Pratsinis, S. E. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles Chem. Mater. 2011, 23, 19851992.Google Scholar
23. Mueller, R.; Madler, L.; Pratsinis, S. E. Nanoparticle synthesis at high production rates by flame spray pyrolysis Chem. Eng. Sci. 2003, 58, 19691976.Google Scholar
24. Madler, L.; Stark, W. J.; Pratsinis, S. E. Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2 J. Mater. Res. 2003, 18, 115120.Google Scholar
25. Teleki, A.; Heine, M. C.; Krumeich, F.; Akhtar, M. K.; Pratsinis, S. E. In situ coating of flame-made TiO2 particles with nanothin SiO2 films Langmuir 2008, 24, 1255312558.Google Scholar
26. Brem, F.; Tiefenauer, L.; Fink, A.; Dobson, J.; Hirt, A. M. A mixture of ferritin and magnetite nanoparticles mimics the magnetic properties of human brain tissue Phys. Rev. B 2006, 73, 224427(1-6).Google Scholar
27. Peters, C.; Dekkers, M. J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size Phys. Chem. Earth 2003, 28, 659667.Google Scholar
28. Gole, A.; Agarwal, N.; Nagaria, P.; Wyatt, M. D.; Murphy, C. J. One-pot synthesis of silica-coated magnetic plasmonic tracer nanoparticles Chem. Comm. 2008, 61406142.Google Scholar