Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-19T18:31:30.482Z Has data issue: false hasContentIssue false

Bimetallic Precursors for Ferroelectric Thin Films; Molecular Control of Stoichiometry

Published online by Cambridge University Press:  22 February 2011

Brian A. Vaartstra*
Affiliation:
Advanced Technology Materials Inc., 7 Commerce Dr., Danbury, CT 06810
Get access

Abstract

The application of ferroelectric oxides in microelectronic and optical devices is critically dependent upon methods to deposit high quality thin films. A major factor influencing the film quality is non-ideal metal stoichiometries caused by process variables. Materials such as PbTiO3 and POZrO3 are well suited for stoichiometric control via molecular precursors having the required metal ratio, eliminating many process variables. Bimetallic precursors for the deposition of lead titanate and PZT thin films have been designed in order to optimize control over the metal stoichiometry. This is accomplished by the synthesis of volatile metalorganic compounds having a 1:1 ratio of Pb:Ti or Pb:Zr. Synthesis and characterization of these novel compounds are presented, and viability for metalorganic chemical vapor deposition (MOCVD) is discussed, based upon decomposition and volatility studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kwak, B.S., Boyd, E.P., Erbil, A., Appl. Phys. Lett. 53, 1702 (1988).Google Scholar
2. (a) Yoon, S., et al., J. Electrochem. Soc: Solid-State Sci. Tech. 135, 3137 (1988).Google Scholar
(b) Takahashi, Y., et al., J. Chem. Soc., Faraday Trans. I 78, 2563 (1982).Google Scholar
(c) Takahashi, Y., et al., J. Chem. Soc., Faraday Trans. I 77, 1051 (1981).Google Scholar
3. (a) Kojima, M., et al., Jap. J. Appl. Phys. Supplement 22–2, 14 (1983).Google Scholar
(b) Okuyama, M., et al., Ferroelectrics 63, 243 (1985).Google Scholar
4. (a) Peng, C.H., Desu, S.B., Appl. Phys. Lett. 61, 16 (1992).Google Scholar
(b) Okada, M., Tominaga, K., Araki, T., Katayama, S., Sakashita, Y., Jpn. J. Appl. Phys. Pt. 1 29, 718 (1990).Google Scholar
5. Chisholm, M.H., Inorganic Chemistry Toward the 21st Century; (American Chemical Society; Washington, D.C., 1983), Ch. 16, p. 269.Google Scholar
6 Hubert-Pfalzgraf, L.G., New. J. Chem. 11, 663 (1987).Google Scholar
7 Bradley, D.C., Chem. Rev. 89, 1317 (1989).Google Scholar
8. Caulton, K.G., Hubert-Pfalzgraf, L.G., Chem. Rev. 90, 969 (1990).Google Scholar
9. Pb(OiPr)2 sublimes at 130 °C at 10−4 torr.Google Scholar
10. Goel, S.C., Chiang, M.Y., Buhro, W.E., Inorg. Chem. 29, 4640 (1990).Google Scholar
11. Pb(O1Bu)2 sublimes at 95 °C at 10−4 torr.Google Scholar
12. See for example references 10 and 13.Google Scholar
13. (a) Vaartstra, B.A., Huffman, J.C., Gradeff, P.S., Hubert-Pfalzgraf, L.G., Daran, J.-C., Parraud, S., Yunlu, K., Caulton, K.G., Inorg. Chem. 29, 3126 (1990).Google Scholar
(b) Vaartstra, B.A., Huffman, J.C., Streib, W.E., Caulton, K.G., J. Chem. Soc. Chem. Commun. 1990. 1750.Google Scholar
(c) Samuels, J.A., Vaartstra, B.A., Huffman, J.C., Caulton, K.G., J. Am. Chem. Soc. 112, 9623 (1990).Google Scholar
(d) Vaartstra, B.A., Streib, W.E., Caulton, K.G., J. Am. Chem. Soc. 112, 8593 (1990).Google Scholar
14. Obtained from Johnson-Matthey, 99.9% purity.Google Scholar
15. Xue, Z., Vaartstra, B.A., Caulton, K.G., Chisholm, M.H., “Chemical Vapor Deposition of Cubic-Zirconia Thin Films from Zirconium Alkoxide Complexes.” accepted for publication, Eur. J. Solid State Inorg. Chem. 1992.Google Scholar
16. Davies, A.G., Puddephatt, R.J., J. Chem. Soc. (C) 1967. 2663.Google Scholar