Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T03:29:54.087Z Has data issue: false hasContentIssue false

Bi-directional porous alumina templates for nanowire field-effect transistors

Published online by Cambridge University Press:  26 February 2011

Travis L. Wade
Affiliation:
[email protected], ECOLE Polytechnique, Laboratoir des Solides Irradies, Route de Saclay, Palaiseau Cedex, N/A, 91128, France, 33 01 69 33 33 52, 33 01 39 33 30 22
Xavier Hoffer
Affiliation:
[email protected], ECOLE Polytechnique, Laboratoire des Solides Irradies, France
Jean-Francois Dayen
Affiliation:
[email protected], ECOLE Polytechnique, Laboratoire des Solides Irradies
Al Dughaim Mohammed
Affiliation:
[email protected], ECOLE Polytechnique, Laboratoire des Solides Irradies
Fahad Humel
Affiliation:
[email protected], ECOLE Polytechnique, Laboratoire des Solides Irradies, France
Jean-Eric Wegrowe
Affiliation:
[email protected], ECOLE Polytechnique, Laboratoire des Solides Irradies, France
Get access

Abstract

Using readily available materials and equipment we are able to sculpture aluminium wires into cylindrical, bi-directional templates for the synthesis and contacting of nanowires as field-effect transistors. The nanowire template is made by partial anodization of the wire perpendicular to its axis as an isolating layer for a gate electrode, vapour deposition of a metal on this layer as a gate, cutting the wire perpendicular to its axis, and finally anodizing the newly exposed area parallel to the wire axis as a template for nanowires. This results in a nanowire template surrounded by a gate electrode that is isolated from the template by the first anodisation layer.

The utility of this structure is demonstrated by a ZnO nanowire field-effect transistor. The ZnO was made by electrodeposition of Zn nanowires in the interior nanoporous template during which an anodic pulse was applied to form a layer of ZnO in the middle of the zinc nanowires. The IV and transfer plots indicate that the ZnO is p-type in depletion mode.

This 3-D transistor is unique in that it can be totally fabricated in a beaker without the need for costly clean room and lithography facilities. The ease and low cost of this new approach to nanodevices will have the effect of liberating nanoscience for scientists of moderate means. As a result this will open nanoscience to new ideas and more inputs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Rao, C. N. R., Deepak, F. L., Gundiah, G., and Govindaraj, A., Progress in Solid State Chemistry 31:5 (2003).Google Scholar
2 Doudin, B., Blondel, A., and Ansermet, J. P., Journal of Applied Physics 79:6090 (1996).Google Scholar
3 Dubois, S., Duvall, J. L., Fert, A., George, J. M., Maurice, J. L., and Piraux, L., Journal of Applied Physics 81:4569 (1997).Google Scholar
4 Schwarzacher, W., Kasyutich, O. I., Evans, P. R., Darbyshire, M. G., Yi, G., Fedosyuk, V. M., Rousseaux, F., Cambril, E., and Decanini, D., 199:185 (1999).Google Scholar
5 Piraux, L., Encinas, A., Vila, L., Màtéfi-Tempfli, S., Màtéfi-Tempfli, M., Darques, M., Elhoussine, F., and Michotte, S., Journal of Nanoscience and Nanotechnology 5:372 (2005).Google Scholar
6 Wade, T. L. and Wegrowe, J.-E., The European Physical Journal Applied Physics 29:3 (2005).Google Scholar
7 Nielsch, K., Müller, F., Li, A.-P., and Gösele, U., Advanced Materials 12:582 (2000).Google Scholar
8 Keller, F., Hunter, M.S., and Robinson, D. L., Journal of the Electrochemical Scoiety 100:411 (1953).Google Scholar
9 O'Sullivan, J. P. and Wood, G. C., Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 317:511 (1970).Google Scholar
10 Masuda, H. and Fukuda, K., Science 268:1466 (1995).Google Scholar
11 Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R. B., and Gosele, U., Nano Letters 2:677 (2002).Google Scholar
12 Jessensky, O., Muller, F., and Gosele, U., Applied Physics Letters 72:1173 (1998).Google Scholar
13 Wegrowe, J.-E., Gilbert, S. E., Kelly, D., Doudin, B., and Ansermet, J.-P., IEEE Transactions on Magnetics 34:903 (1998).Google Scholar
14 Wade, T. and Wegrowe, J.-E., ECOLE Polytechnique, France, 2003, p. patent application.Google Scholar
15 Cojocaru, C. S., Padovani, J. M., Wade, T., Mandoli, C., Jaskierowicz, G., Wegrowe, J.-E., Morral, A. F.-i., and Pribat, D., Nano Letters 5:675 (2005).Google Scholar
16 Bonard, J.-M., Stöckli, T., Noury, O., and Châtelin, A., Applied Physics Letters 78:2775 (2001).Google Scholar
17 Fan, Z., Wang, D., Chang, P.-C., Tseng, W.-Y., and Lu, J. G., Applied Physics Letters 85:5923 (2004).Google Scholar
18 Heo, Y. W., Norton, D. P., Tien, L. C., Kwon, Y., Kang, B. S., Ren, F., and Pearton, S. J., Materials Science and Engineering R 47:1 (2004).Google Scholar
19 Heo, Y. W., Tien, L. C., Kwon, Y., Norton, D. P., and Pearton, S. J., Applied Physics Letters 85:2274 (2004).Google Scholar
20 Ng, H. T., Han, J., Yamada, T., Nguyen, P., Chen, Y. P., and Meyyappan, M., Nano Letters 4:1247 (2004).Google Scholar