Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:49:10.927Z Has data issue: false hasContentIssue false

Benefits and Trade-offs in Multi-Level Air Gap Integration

Published online by Cambridge University Press:  01 February 2011

Romano Hoofman
Affiliation:
[email protected], Philips Research, CMOS Module Integration, Kapeldreef 75, Leuven, N/A, B3001, Belgium
Roel Daamen
Affiliation:
[email protected], Philips Research, Kapeldreef 75, Leuven, N/A, B3001, Belgium
Viet Nguyenhoang
Affiliation:
[email protected], Philips Research, Kapeldreef 75, Leuven, N/A, B3001, Belgium
Julien Michelon
Affiliation:
[email protected], Philips Research, Kapeldreef 75, Leuven, N/A, B3001, Belgium
Laurent G. Gosset
Affiliation:
[email protected], Philips Semiconductor, Crolles R&D, Crolles, N/A, N/A, France
Vincent Arnal
Affiliation:
[email protected], ST Microelectronics, Crolles R&D, Crolles, N/A, N/A, France
Jean de Pontcharra
Affiliation:
[email protected], CEA-LETI, Grenoble, N/A, N/A, France
Frederic Gaillard
Affiliation:
[email protected], CEA-LETI, Grenoble, N/A, N/A, France
Rudy Caluwaerts
Affiliation:
[email protected], IMEC, Leuven, N/A, N/A, Belgium
Christophe Bruynseraede
Affiliation:
[email protected], IMEC, Leuven, N/A, N/A, Belgium
Gerald Beyer
Affiliation:
[email protected], IMEC, Leuven, N/A, N/A, Belgium
Get access

Abstract

In this paper, two different air gap integration approaches are discussed in detail. Firstly, air gaps can be created using sacrificial materials, which are selectively removed through a capping layer either by wet- or dry-etching or by thermal decomposition. The second class benefits from the non-conformal deposition of different CVD dielectrics, which creates air gaps for narrow spaced lines. The benefit of air gaps in terms of capacitance reduction in multilevel interconnects is well known, therefore the authors will mainly concentrate on the challenges associated with the introduction of air gaps in interconnect systems. It will be shown that interconnect containing air gaps does not suffer more from reliability challenges than interconnects with porous low-k dielectrics. Therefore, air gaps can be considered as a viable option for the 32nm node and beyond.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1 Hoofman, R.J.O.M, Verheijden, G.J.A.M., Michelon, J., Iacopi, F., Travaly, Y., Baklanov, M.R., Tökei, Zs., Beyer, G.P., Microelectron. Eng. 80 (2005), p.337344.Google Scholar
2 Arnal, V., Torres, J., Gayet, P., Gonella, R., Spinelli, P., Guillermet, M., Reynard, J-P., Verove, C., Proc. IITC (2001), p.298300.Google Scholar
3 Mussy, J.P. Gueneau de, Bruynsereade, C., Tokei, Z., Beyer, G.P., Maex, K., Proc. IITC (2005), p.150152.Google Scholar
4 Daamen, R., Verheijden, G.J.A.M., Bancken., P.H.L, Vandeweyer, T., Michelon, J., V. Nguyen Hoang, Hoofman, R.J.O.M., Gallagher, M.K., Proc. IITC (2005), p.240242.Google Scholar
5 Gosset, L.G., Farcy, A., Pontcharra, J. de, Lyan, Ph., Daamen, R., Verheijden, G.J.A.M., Arnal, V., Gaillard, F., Bouchu, D., Bancken., P.H.L, Vandeweyer, T., Michelon, J., Nguyenhoang, V., Hoofman, R.J.O.M., Torres, J., Microelectronic Engineering 82 (2005), p. 321332.Google Scholar
6 Cote, D.R., Nguyen, S.V., Cote, W.J., Pennington, S.L., Stamper, A.K., Podlesnik, D.V., IBM J. Res. Develop. 39 (1995), p. 437464 Google Scholar
7 Shieh, B.P., Bassman, L.C., Kim, D.-K., Saraswat, K.C., Deal, M.D., McVittie, J.P., List, R.S., Nag, S., Ting, L., Proc. IITC (1998), p. 125127.Google Scholar
8 Ueda, T., Tamaoka, E., Yamashita, K., Aoi, N., Mayumi, S., Proc. VLSI Symp. (1998), p. 4647.Google Scholar
9 Shieh, B., Saraswat, K.C., McVittie, J.P., List, S., Nag, S., Islamraja, M., Havemann, R.H., IEEE Electron Dev. Lett. 19 (1998), p. 1618.Google Scholar
10 Noguchi, J., Fujiwara, T., Sato, K., Nakamura, T., Kubo, M., Uno, S., Ishikawa, K., Saito, T., Konishi, N., Yamada, Y., Tamaru, T., Proc. IITC (2003), p. 6870.Google Scholar
11 Uno, S., Noguchi, J., Ashihara, H., Oshima, T., Sato, K., Konishi, N., Saito, T., Hara, K., Proc. IITC (2005), p. 174176.Google Scholar
12 Noguchi, J., Sato, K., Konishi, N., Uno, S., Oshima, T., Ishikawa, K., Ashihara, H., Saito, T., Kubo, M., Tamaru, T., Yamada, Y., Aoki, H., Fujiwara, T., IEEE Trans. Electron Dev. 52 (2005), p. 352359.Google Scholar
13 Arnal, V., Torres, J., Reynard, J-P., Gayet, P., Verove, C., Guillermet, M., Spinelli, P., Microelectron. Eng. 60 (2002), p. 143148.Google Scholar
14 Gosset, L.G., Arnal, V., Brun, Ph., Broekaart, M., Monget, C., Casanova, N., Rivoire, M., Oberlin, J.-C., Torres, J., Microelectron. Eng. 70 (2003), p. 274279.Google Scholar
15 Gabric, Z., Pamler, W., Schindler, G., Steinhögl, W., Traving, M., Proc. IITC (2004), p. 151153.Google Scholar
16 Stich, A., Gabric, Z., Pamler, W., Microelectron. Eng. 82 (2005), p. 362367.Google Scholar
17 Mussy, J.P. Gueneau de, Richard, O., Beyer, G., Maex, K., Electrochem. Solid State Lett. 7 (2004), G286289 Google Scholar
18 Ishigami, T., Kurokawa, T., Kakuhara, Y., Withers, B., Jacobs, J., Kolics, A., Ivanov, I., Sekine, M., Ueno, K., Proc. IITC (2004), p. 7577.Google Scholar
19 Chhun, S., Gosset, L.G., Casanova, N., Ney, D., Delille, D., Trouiller, C., Hopstaken, M., Chausse, P., Gregoire, J., Gautier, B., Dupuy, J.C., Torres, J., Microelectron. Eng. 82 (2005), p. 587593.Google Scholar
20 Kohl, P.A., Bhusari, D.M., Wedlake, M., Case, C., Klemens, F.P., Miner, J., Lee, B-C., Gutmann, R.J., Shick, R., IEEE Electron Dev. Lett. 21 (2000), p. 557559.Google Scholar
21 Gosset, L.G., Arnal, V., Prindle, C., Hoofman, R., Verheijden, G., Daamen, R., Broussous, L., Fusalba, F., Assous, M., Chatterjee, R., Torres, J., Gravesteijn, D., Yu, K.C., Proc. IITC (2003), p. 6567.Google Scholar
22 Nguyen, V.H., Christie, P., Heringa, A., Kumar, A., Ng, R., Proc. IITC (2005), p. 191193.Google Scholar
23 Mercado, L.L., Goldberg, C., Kuo, S.M., Lee, T.Y., Pozder, S.K., IEEE Trans. Dev. Mater. Reliab. 3 (2003), p. 111118.Google Scholar
24 Hau-Riege, C.S., Hau-Riege, S.P., Marathe, A.P., J. Appl. Phys. 96 (2004), p. 57925796.Google Scholar
25 Shieh, B.P., Deal, M.D., Saraswat, K.C., Choudhury, R., Park, C-W., Sukharev, V., Loh, W., Wright, P., Proc. IITC (2002), p. 203205.Google Scholar
26 Paschen, F., Wied. Ann. 37 (1889), p. 6996.Google Scholar
27 Shea, H.R., Gasparyan, A., Chan, H.B., Arney, S., Frahm, R.E., Lopez, D., Jin, S., McConnell, R.P., IEEE Trans. Dev. Mater. Reliab. 4 (2004), p. 198207.Google Scholar