Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T16:08:06.871Z Has data issue: false hasContentIssue false

Behavior of Si Interstitials and Boron-Interstitial Pairs at the Si/SiO2 Interface

Published online by Cambridge University Press:  17 March 2011

Taras A. Kirichenko
Affiliation:
Microelectronics Research Center, University of Texas, Austin, Texas 78712
Decai Yu
Affiliation:
Department of Chemical Engineering, University of Texas, Austin, Texas 78713
Sanjay K. Banerjee
Affiliation:
Microelectronics Research Center, University of Texas, Austin, Texas 78712
Gyeong S. Hwang
Affiliation:
Department of Chemical Engineering, University of Texas, Austin, Texas 78713
Get access

Abstract

Using density functional theory calculations within the generalized gradient approximation, we have investigated the structure, energetics, bonding, and diffusion behavior of Si interstitials and boron-interstitial pairs at the Si/SiO2 interface. We find that interstitials are significantly stabilized at the Si/SiO2 interface and prefer to reside on the SiO2 side rather than the Si side. Due to the interstitial stabilization, boron-interstitial pairs are likely to be easily dissociated in the vicinity of the Si/SiO2 interface. This study provides valuable insight into interstitial annihilation and boron precipitation at the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hamers, R. J., Tromp, R.M., and Demuth, J.E., Phys. Rev. B 34, 5343 (1986).Google Scholar
2. Aruga, T. and Murata, Y., Phys. Rev. B, 34, 5654 (1986).Google Scholar
3. Tsamis, C. and Tsoukalas, D., J. Appl. Phys., 84, 6650 (1998).Google Scholar
4. Law, M.E., Haddara, Y.M. and Jones, K.S., J. Appl. Phys., 84, 3555 (1998).Google Scholar
5. Jain, S.C., Schoenmaker, W., Lindsay, R., Stolk, P.A., Decoutere, S., Willander, M., Maes, H.E., J. Appl. Phys., 91, 8919 (2002).Google Scholar
6. Sadigh, B. et al. , Phys. Rev. Let., 83, 4341 (1999).Google Scholar
7. Wooten, F., Winer, K. and Weaire, D., Phys Rev Lett 54, 1392 (1985).Google Scholar
8. Keating, P.N., Phys Rev, 145, 637 (1966).Google Scholar
9. Hohenberg, P. and Kohn, W., Phys. Rev 136, B864 (1964).Google Scholar
10. Kohn, W. and Sham, L.J., Phys. Rev. 140, A1133 (1965).Google Scholar
11. Kresse, G. and Furthmuller, J., VASP the Guide, Vienna Univ. of Technology, (2001).Google Scholar
12. Kresse, G. and Hafner, J. Phys. Rev. B 47, RC558 (1993).Google Scholar
13. Monkhorst, H.J., Pack, J.D., Phys. Rev. B 13, 5188 (1976).Google Scholar
14. Henkelman, G., Uberuaga, B.P., and Jónsson, H., J. Chem. Phys., 113, 9901 (2000).Google Scholar
15. Silvi, B. and Savin, A., Nature 371, 683 (1994).Google Scholar
16. Becke, A.D. and Edgecombe, K.E., J. Chem. Phys., 92(9), 5397 (1990).Google Scholar
17. Pasqarello, A., Hybertsen, M.S., and Car, R., Appl. Phys. Lett. 68, 625 (1996).Google Scholar
18. Needs, R.J., J. Phys.: Condens Matter 11, 10437 (1999).Google Scholar
19. Brocks, G., Kelly, P.J. and Car, R. Phys. Rev. Lett. 66, 1729 (1991).Google Scholar
20. Lopez, J. Carrillo and Acevedo, Morales, Phys. Stat. Sol. (a), 173, 289 (1999).Google Scholar
21. Dunham, S.T., J. Appl. Phys., 71, 685 (1992).Google Scholar
22. The detailed charge density and ELF analysis of lower- and upper-bond interstitial …states will be presented elsewhere.Google Scholar
23. Windl, W., Stumpf, R., Liu, X.-Y., Msaquelier, M.P., Comp. Mat. Sci. 21, 496 (2001).Google Scholar
24. Lenosky, T.J., Sadigh, B., Theiss, S., Caturla, M-J., Appl. Phys. Lett. 77, 1834 (2000).Google Scholar