Article contents
BaZrO3Thin Films For Humidity Gas Sensor
Published online by Cambridge University Press: 01 February 2011
Abstract
Microscale (MEMS) gas sensing devices for power plant and automobile exhaust gas are being developed. Bulk BaZrO3 has been previously found to be sensitive to H2O at high temperatures, but was never studied in a thin film form. This research thrust focuses on undoped BaZrO3 and doped BaZrO3 with Y.
Thin films were deposited on oxidized n-type silicon substrates at room temperature from ceramic targets with an Ar sputtering ambient. Various deposition pressures and deposition powers were used for the initial investigation. The structural and electrical properties of the deposited films were characterized to investigate their relationships to the deposition process parameters. X-ray diffraction (XRD) was used to measure the crystal structure of the deposited films, and in particular was used to determine if any crystallographic texture is present in the films. XRD results indicate the as-deposited films are amorphous before annealing. Films sputtered with and without oxygen in the ambient were compared. The crystal structure and morphology of BaZrO3 and BaZrO3 doped with Y after annealing were also determined. The materials changed from amorphous to crystalline after annealing at temperatures of 800 °C and 1000 °C for 3 hours in forming gas (2% H2 balanced with Ar gas) and oxygen. Temperature was found to dominate over deposition conditions in determining the final film structure. Atomic force microscopy was used to examine the morphology of the thin films. Gas sensor test structures using a Pt thin film metallization for interdigitated electrode structures were fabricated for gas sensing measurements. The experiments with the completed test structures measured the materials¡¦ resistivity as a function of temperature and gas concentration. Both materials decrease in resistance with increasing temperature, which is consistent with ionic conduction. Some experiments tested the gas sensitivity and selectivity of the films to the target gas H2O vapor (humidity) and possible cross sensitive gases H2 and CO2. Both materials need further development to evaluate their suitability for thin film sensors. First, the films were found to be highly resistive, making characterization of the electrical properties very difficult. Second, O2 ambient annealing gas will be applied to compare the crystal structure and morphology of both films with an Ar ambient annealing process.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
- 6
- Cited by