Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-29T08:13:14.283Z Has data issue: false hasContentIssue false

Base Transit Time in Abrupt GaN/InGaN/GaN and AlGaN/GaN/AlGaN HBTs

Published online by Cambridge University Press:  15 February 2011

Shean-Yih Chiu
Affiliation:
Electrical and Systems Engineering Department, University of Connecticut, CT 06269, [email protected]
A. F. M. Anwar
Affiliation:
Electrical and Systems Engineering Department, University of Connecticut, CT 06269, [email protected]
Shangli Wu
Affiliation:
Electrical and Systems Engineering Department, University of Connecticut, CT 06269, [email protected]
Get access

Abstract

Base transit time, τb, in abrupt npn GaN/InGaN/GaN and AlGaN/GaN/AlGaN double heterojunction bipolar transistors (DHBTs) is reported. Base transit time strongly depends not only on the quasi-neutral base width, but also on the low field electron mobility, μn, in the neutral base region and the effective electron velocity, Sc, at the edge of base-collector heterojunction. μn and Sc are temperature-dependent parameters. A unity gain cut-off frequency of 10.6 GHz is obtained in AlGaN/GaN/AlGaN DHBTs and 19.1 GHz in GaN/InGaN/GaN DHBTs for a neutral base width of 0.05um. It is also shown that non-stationary transport is not required to study τb for neutral base width in the range of 0.05um for GaN-based HBTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Pankove, J., Chang, S. S., Lee, H. C. and Molnar, R. J., TEDM, 389 (1994)Google Scholar
[2] Mohammad, S. N. and Morkoc, H., J. Appl. Phys., 78, 4200 (1995)Google Scholar
[3] Kroemer, H., Solid-State Electron., 28, 1101 (1985)Google Scholar
[4] Roulston, D. J., IEEE Electron Device Lett., 11, 88 (1990)Google Scholar
[5] Hafizi, M., Streit, D. C., Tran, L. T., Kobayashi, K. W., Umemoto, D. K., Oki, A. K., and Wang, S. K., IEEE Electron Device Lett., 12, 581 (1991)Google Scholar
[6] Jahan, M. M. and Anwar, A. F. M., Solid-State Electron., 39, 133 (1996)Google Scholar
[7] Jahan, M. M. and Anwar, A. F. M., Solid-State Electron., 39, 941 (1996)Google Scholar
[8] Koida, Y., Itoh, H., Khan, M. R. H., Hiramatsu, K., Sawaki, N., and Akasaki, I., J. Appl. Phys. 61, 4540 (1987)Google Scholar
[9] Parikh, C. D. and Lindholm, F. A., IEEE Trans. on Electron Devices, 39, 1303 (1992)Google Scholar
[10] Khan, M. A., Skogman, R. A., Hove, J. M. Van. Krishanakutty, S., and Kolbas, R. M., Appl. Phys. Lett. 56, 1257 (1991)Google Scholar
[11] Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B., and Burns, M., J. Appl. Phys. 76, 1363 (1994)Google Scholar
[12] Jenkins, D. W. and Dow, J. D., Phys. Rev. B39, 3317 (1992)Google Scholar
[13] Shur, M. S. and Khan, M. A., MRS Bulletin. 44, 1997 Google Scholar
[14] Dmitriev, A. and Oruzheinikov, A., Internat. Symp. on Blue Lasser and Light Emitting Diodes, 360 (1996)Google Scholar
[15] Webster, Richard T. and Anwar, A. F. M., MRS, Symp. Proc., 482, 929, Boston, 1997 Google Scholar
[16] Wu, S., Webster, Richard T. and Anwar, A. F. M., Proc. 1997 International Semicond. Device Research Symp., 385, University of Virginia, 1997 Google Scholar