Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:57:29.220Z Has data issue: false hasContentIssue false

Band Tailing and Transport in a-SiGe:H-Alloys

Published online by Cambridge University Press:  25 February 2011

G. H. Bauer
Affiliation:
Institut fur Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart-80, F.R.G.
C. E. Nebel
Affiliation:
Institut fur Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart-80, F.R.G.
M. B. Schubert
Affiliation:
Institut fur Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart-80, F.R.G.
G. Schumm
Affiliation:
Institut fur Physikalische Elektronik, Universitaet Stuttgart, Pfaffenwaldring 47, D-7000 Stuttgart-80, F.R.G.
Get access

Abstract

Optical and transport studies of both cb- and vb-tail states in a-Si1−xGex:H such as subband absorption (PDS), instationary photocurrent experiments (TOF, PTS) for electrons and holes, Modulated Photocurrent Spectroscopy (MPS), and Raman scattering have been performed. The main consequences of Ge-alloying into the a-Si:H network are i) an increase in cb-tail state density at the conduction band edge and in the exponential cb- tail even for small x (O<x<0.3), accompanied by ii) a rise in deep cb-tail and midgap states which to some extent can be reduced by appropriate deposition methods; iii) at the valence band side up to x≈0.3 the tail seems not to be affected at all and for 0.3<x<0.9 the vb-tail obviously can be kept similar to that of a-Si:H (Evo≈(50–60) meV). Halfwidths of Raman TO-like modes point to the existence of a rigid Si-network in O<x<0.3 in which Ge is incorporated and to a transition at x>0.35 into a Si-Ge compound structure with maximum disorder at x≈0.5.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tanaka, K., Matsuda, A. in Mat. Issues in Amorph. Semicond. Technol., ed. Adler, D., Hamakawa, Y., Madan, A. (Mat.Res.Soc.Proc. 70, Pittsb., PA 1986), pp. 245255.Google Scholar
2. Ichimura, T. et al., J. Noncryst. Sol. 77/78, 901 (1985).Google Scholar
3. Dalal, V. et al., Conf.Rec. 18 IEEE PVSC (IEEE New York, 1985) pp. 1500–1504.Google Scholar
4. Antoine, A.M. et al., Proc. 7 EC PVSEC, ed. Goetzberger, A., Palz, W., Willecke, G. (D.Reidel Publ. Comp., Dordrecht, 1987) pp.609613.Google Scholar
5. Weller, H.C. et al., Conf. Rec. 19 IEEE PVSC (IEEE, New York, 1987) pp. 872–877.Google Scholar
6. Lucovsky, G., Tsu, D.V., J. Noncryst. Sol. 97/98,265 (1987).Google Scholar
7. Watanabe, T. et al., Jap. J. Appl. Phys. 26, L288 (1987).Google Scholar
8. Tsuda, S. et al., J. Noncryst. Sol. 77/78,845 (1985).Google Scholar
9. Konagai, M. et al., 2 PSVEC, ed. Pei-Nuo, Yu, Tianjin Inst. Power Sources (Adfield Advert. Co., Hong Kong, 1986) pp.414420.Google Scholar
10. Oda, S. et al., J. Noncryst. Sol. 77/78, 877 (1985).Google Scholar
11. Mackenzie, K.D. et al., J. Noncryst. Sol. 77/78, 877 (1985).CrossRefGoogle Scholar
12. Slobodin, D. et al., Conf. Rec. 18 IEEE PVSC (IEEE, New York, 1985) pp. 1505–1512.Google Scholar
13. Mackenzie, K.D. et al., J. Noncryst. Sol. 97/98, 1019 (1987).Google Scholar
14. Weller, H.C. et al., J. Noncryst. Sol. 97/98, 1071 (1987).Google Scholar
15. Guha, S. et al., J. Noncryst. Sol. 97/98, 1455 (1987).Google Scholar
16. Beeman, D. et al., Phys. Rev.B 32, 874 (1985).Google Scholar
17. Abel, C.-D., Diploma-Thesis, IPE/Univers. Stuttgart, 1989, to be publ.Google Scholar
18. Nebel, C.E. et al.,, Proc. 8 EC PVSEC, ed. Solomon, I., Equer, B. (Kluwer Acad. Publ., Dordrecht, 1988) pp. 919923.Google Scholar
19. Monroe, D., Kastner, M.A., Phil. Mag. B 47, 605 (1983).Google Scholar
20. Tiedje, T. in Semicon.d a. Semimet., ed. Pankove, J.I. (Acad. Press, London, 1984) Vol.21–C, 207238.Google Scholar
21. Karg, F. et al., J. Appl. Phys. 60, 2016 (1986).Google Scholar
22. Vanderhagen, R., Longeaud, C., see ref. 18, pp.987992.Google Scholar
23. Finger, F., Fuhs, W., in Amorph. Si Technol., ed. Madan, A., Thompson, M.J., Taylor, P.C., LeComber, P.G., Hamakawa, Y. (Mat. Res. Soc. Proc. 118, Pittsb., PA 1988) pp. 635640.Google Scholar
24. Oheda, H., J. Appl. Phys. 52, 6693 (1981).Google Scholar
25. Schumm, G., Bauer, G.H., Phys. Rev.B, 39, Mar 15 (1989)Google Scholar
26. Stutzmann, M. et al., Phil. Mag., to be publ.Google Scholar
27. Stutzmann, M. et al., Phys. Rev.B, to be publ.Google Scholar
28. Ritter, D. et al., J.Appl.Phys. 62, 4563 (1987); J.Noncryst.Sol. 97/98, 571 (1987).CrossRefGoogle Scholar
29. Bauer, G.H. et al., ref. 18, pp.729–723.Google Scholar
30. Schubert, M.B. et al., IEEE Transact.Electron Dev., spec. iss. Amorphous Semicond. Devices, 1989, accept. f. publ.Google Scholar
31. Tanaka, K., Tsu, R., Phys. Rev.B 24, 2083 (1981).Google Scholar
32. Wagner, S. et al., ref. 23, pp. 623–633.Google Scholar