Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:37:13.711Z Has data issue: false hasContentIssue false

Band Structure and Cation Ordering in LiGaO2

Published online by Cambridge University Press:  10 February 2011

Sukit Limpijumnong
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106–7079
Walter R.L. Lambrecht
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106–7079
Benjamin Segall
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106–7079
Kwiseon Kim
Affiliation:
Department of Physics, Case Western Reserve University, Cleveland, OH 44106–7079
Get access

Abstract

Full-potential linear muffin-tin orbital calculations were performed for LiGaO2 in different crystal structures in order to investigate the nature and origin of the cation ordering, structural relaxation and their effects on the band structure. It is found that the most important factor for the bonding is the exclusive occurrence of Li2Ga2 tetrahedra surrounding oxygen. Structures including LiGa3 and Li3Ga tetrahedra have significantly higher total energies and smaller bandgaps. The band-offset between GaN and LiGaO2 is estimated using the dielectric midgap approach.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See e.g. Gallium Nitride and Related Materials, edited by Ponce, F. A., Dupuis, R. D., Nakamura, S. and Edmond, J. A., (Mater. Res. Soc. Proc. 395,Pittsburgh, PA, 1996), p. 27, p. 51, p. 55, p. 61, p.67, and p. 535.Google Scholar
2. Nicholls, J. F. H., Gallagher, H., Henderson, B., Trager-Cowan, C., Middleton, P. G., O’Donnell, K. P., Cheng, T. S., Foxon, C. T., and Chai, B. H. T., in Ref. [1], p. 535.Google Scholar
3. Cardona, M. and Christensen, N. E., Phys. Rev. B 35, 6182 (1987).Google Scholar
4. Wei, S.-H., Ferreira, L. G., and Zunger, A., Phys. Rev. B 41, 8240 (1990).Google Scholar
5. Zunger, A., Wei, S.-H., Ferreira, L. G., and Bernard, J. E., Phys. Rev. Lett. 65, 353 (1990).Google Scholar
6. Kim, K., Limpijumnong, S., Lambrecht, W. R. L. and Segall, B., in this proceeding.Google Scholar
7. Marezio, M., Acta Cryst. 18, 481–4 (1965).Google Scholar
8. Methfessel, M., Phys. Rev. B 38, 1537 (1988).Google Scholar
9. Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, ibid. 140, A1133 (1965).Google Scholar
10. Hedin, L. and Lundqvist, B. I., J. Phys. C 4, 2064 (1971).Google Scholar
11. Kim, K., Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 53, 16310 (1996).Google Scholar
12. Lambrecht, W. R. L., Segall, B., Strite, S., Martin, G., Agarwal, A., Morkoç, H., and Rockett, A., Phys. Rev. B 50, 14155 (1994).Google Scholar
13. Flores, F. and Tejedor, C., J. Phys. C 20, 145 (1987).Google Scholar
14. Tersoff, J., Phys. Rev. Lett. 30, 3874 (1984); W. A. Harrison and J. Tersoff, J. Vac. Sci. Technol. B 4, 1068 (1986).Google Scholar
15. Lambrecht, W. R. L. and Segall, B., Phys. Rev. Lett. 61, 1764 (1988); Phys. Rev. B 41, 2832 (1990).Google Scholar
16. Madelung, O., Schulz, M., Weiss, H., Numerical Data and Functional Relationships in Science and Technology, Group III Vol 17(b), (Springer-Verlag, Berlin, 1982), pp. 35–44.Google Scholar