Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:07:38.131Z Has data issue: false hasContentIssue false

Band Offsets at Strained-Layer Interfaces

Published online by Cambridge University Press:  26 February 2011

Chris G. Van De Walle*
Affiliation:
IBM Thomas J. Watson Research Center, P.O Box 218, Yorktown Heights, NY 10598
Get access

Abstract

Strained-layer heterojunctions and superlattices have recently shown tremendous potential for device applications because of their flexibility for tailoring the electronic band structure. We present a theoretical model to predict the band offsets at both lattice-matched and pseudomorphic strained-layer interfaces. The theory is based on the local-density- functional pseudopotential formalism, and the “model solid approach” of Van de Walle and Martin. The results can be most simply expressed in terms of an “absolute” energy level for each semiconductor, and deformation potentials that describe the effects of strain on the electronic bands. The model predicts reliable values for the experimentally observed lineups in Si/Ge, GaAs/InAs, and ZnSe/ZnS systems, and can be used to ex-plore which combinations of materials and configurations of the strains will lead to the desired electronic properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Van de Walle, C. G. and Martin, R. M., Phys. Rev.B 35, 8154 (1987).Google Scholar
2Van de Walle, C. G. and Martin, R. M., Phys. Rev.B 34, 5621 (1986).Google Scholar
3 See the discussion in Ref.2Google Scholar
4Van de Walle, C. G., Ph.D Dissertation, Stanford University (1986).Google Scholar
5Van de Walle, C. G. and Martin, R. M., J. Vac. Sci. Technol.B 4, 1055 (1986).Google Scholar
6Bachelet, G. B., Hamann, D. R. and Schluter, M., Phys. Rev. B 26, 4199 (1982).Google Scholar
7 Atomic configurations are listed in Ref. 2, and were obtained from tight-binding calculations by Chadi, D. J. (private communication).Google Scholar
8Gualtieri, G. P., Nuzzo, R. G., Malik, R. J., Walker, J. F., Feldman, L. C., Sunder, W. A., and Schwartz, G. P., J. Vac. Sci. Technol. B 5, 1284 (1987).Google Scholar
9Menéndez, J., Pinczuk, A., Werder, D. J., Valladares, J.P., Chiu, T. H., and Tsang, W. T., Solid State Commun. 61, 703 (1987).Google Scholar
10Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology (Springer, New York, 1982), Group III, Vol.17 a-b.Google Scholar
11Shahzad, K., Olego, D. J. and Van de Walle, C. G. (to be published).Google Scholar
12Van de Walle, C. G. and Martin, R. M., J. Vac. Sci. Technol.B5, 1225 (1987).Google Scholar
13Lang, D. V., Panish, M. B., Capasso, F., Allam, J., Hamm, R. A., Sergent, A. M., and Tsang, W. T., Appl. Phys. Lett. 50, 736 (1987).Google Scholar
14Skolnick, M. S., Tapster, P. R., Bass, S. J., Pitt, A. D., Apsley, A., and Aldred, S. P., Semicond. Sci. Technol. 1, 29 (1986).Google Scholar
15People, R., J. Appl. Phys. 62, 2551 (1987).Google Scholar