Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:15:03.958Z Has data issue: false hasContentIssue false

Band Lineup of Van Der Waals-Epitaxy Interfaces

Published online by Cambridge University Press:  03 September 2012

R. Schlaf
Affiliation:
Hahn-Meitner-Institut, Abt. Grenzflächen, Glienicker Str.100, 14109 Berlin, Germany
T. Löher
Affiliation:
Hahn-Meitner-Institut, Abt. Grenzflächen, Glienicker Str.100, 14109 Berlin, Germany
O. Lang
Affiliation:
Hahn-Meitner-Institut, Abt. Grenzflächen, Glienicker Str.100, 14109 Berlin, Germany
A. Klein
Affiliation:
Hahn-Meitner-Institut, Abt. Grenzflächen, Glienicker Str.100, 14109 Berlin, Germany
C. Pettenkofer
Affiliation:
Hahn-Meitner-Institut, Abt. Grenzflächen, Glienicker Str.100, 14109 Berlin, Germany
W. Jaegermann
Affiliation:
Hahn-Meitner-Institut, Abt. Grenzflächen, Glienicker Str.100, 14109 Berlin, Germany
Get access

Abstract

Epitaxial lattice mismatched heterointerfaces between layered semiconductors and themselves and II-VI semiconductors (CdS, CdTe), respectively, have been prepared and their band lineup determined by photoemission. Different physical mechanisms, which govern the heterointerface formation, can be discriminated due to the specific properties of the van der Waals (vdW) surface. The interfaces between layered semiconductors mostly follow the electron affinity rule with a small but systematic deviation, which is assigned to the influence of interfacial quantum dipoles. However, the band lineup to the II-VI semiconductors shows a large interface dipole, which is related to a structural dipole from the polar, Cd terminated, face of the (111)- in case of Zinkblende CdTe- and the (0001)- in case of Wurtzite CdS- oriented overlayer film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Capasso, F., and Margaritondo, G. (eds), Heterojunction Band Discontinuities, North Holland, Amsterdam, (1987).Google Scholar
2 Kroemer, H., in Molecular Beam Epitaxy and Heterostructures, edited by Ahngand, L. L. and Ploog, K., Marinus Nijgoff Publishers, Dordrecht, (1985).Google Scholar
3 Tersoff, J., Phys. Rev., B 30, 4874 (1984)Google Scholar
4 Ruan, Y. C., and Ching, W. C., J. Appl. Phys., 62, 2885 (1987).Google Scholar
5 Jaegermann, W., in Photoelectrochemistry and Photovoltaics of layered Semiconductors. edited by Aruchamy, A., Kluwer, Dordrecht, 1992.Google Scholar
6 Koma, A., and Yoshimura, K., Surf. Sci., 174, 556 (1986); A. Koma, Thin Solid Films 216, 72 (1992)Google Scholar
7 Löher, T., Tomm, Y., Pettenkofer, C., and Jaegermann, W., J. Appl. Phys., 65, 555 (1994); T. Löher, Y. Tomm, A. Klein, D. Su, C. Pettenkofer, W. Jaegermann, J. Appl. Phys., 80, 5718 (1996)Google Scholar
8 Armstrong, R., Parkinson, B. A., Pettenkofer, C., Jaegermann, W., Surf. Sci, (in press) R. Schlaf, D. Louder, O. Lang, C. Pettenkofer, W. Jaegermann, K. Nebesuy, P. Lee, B. A. Parkinson, N. R. Armstrong, J. Vac. Sci. Technol. A, 1761 (1995).Google Scholar
9 Schlaf, R., Lang, O., Armstrong, N. R., Pettenkofer,and, C., Jaegermann, W., Armstrong, N. R., in preparation.Google Scholar
10 Klein, T., Pettenkofer, C., Jaegermann, W., in preparation.Google Scholar
11 Waldrop, J. R., and Grant, R. W., Phys. Rev. Lett., 43, 1686 (1979).Google Scholar
12 Lang, O., Tomm, Y., Schlaf, R., Pettenkofer, C., Jaegermann, W., J. Appl. Phys., 75, 781 (1994).Google Scholar
13 Lannoo, M., and Friedel, P., Atomic and Electronic Structure of Solid Surfaces, Springer Verlag, Berlin (1991).Google Scholar