Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:38:52.507Z Has data issue: false hasContentIssue false

Band energy structure arrangement for organic solar cells with metalized deoxyribonucleic acid strands on anode electrode

Published online by Cambridge University Press:  20 June 2011

Ali Bilge Guvenc
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Shirui Guo
Affiliation:
Department of Chemistry, University of California-Riverside, Riverside, CA 92521, U.S.A.
Cengiz Ozkan
Affiliation:
Department of Mechanical Engineering, University of California-Riverside, Riverside, CA, U.S.A. Materials Science and Engineering Program, University of California-Riverside, Riverside, CA, U.S.A.
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California-Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

Deoxyribonucleic acids provide exciting opportunities as templates in self assembled architectures and functionality in terms of optical and electronic properties. In this study, we investigate the effects of metalized DNA sequences in organic bulk-heterojunction solar cells. These effects are characterized via optical, quantum efficiency and current-voltage measurements. We demonstrated that by arranging the band energy structure of the devices via placing metalized deoxyribonucleic acid sequences on the hole collection side of the active layer lead to a 20% increase in the power conversion efficiency.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wohrle, D. and Meissner, D., Advanced Materials 3 (3), 129138 (1991).Google Scholar
2. Kim, J. Y., Kim, S. H., Lee, H. H., Lee, K., Ma, W. L., Gong, X. and Heeger, A. J., Advanced Materials 18 (5), 572-+ (2006).Google Scholar
3. Brabec, C. J., Hauch, J. A., Schilinsky, P. and Waldauf, C., Mrs Bulletin 30 (1), 5052 (2005).Google Scholar
4. Haugeneder, A., Neges, M., Kallinger, C., Spirkl, W., Lemmer, U., Feldmann, J., Scherf, U., Harth, E., Gugel, A. and Mullen, K., Physical Review B 59 (23), 1534615351 (1999).Google Scholar
5. Morana, M., Wegscheider, M., Bonanni, A., Kopidakis, N., Shaheen, S., Scharber, M., Zhu, Z., Waller, D., Gaudiana, R. and Brabec, C., Advanced Functional Materials 18 (12), 17571766 (2008).Google Scholar
6. Kannan, B., Castelino, K. and Majumdar, A., Nano Lett 3 (12), 17291733 (2003).Google Scholar
7. Kymakis, E., Kornilios, N. and Koudoumas, E., J Phys D Appl Phys 41 (16), - (2008).Google Scholar
8. Huynh, W. U., Dittmer, J. J. and Alivisatos, A. P., Science 295 (5564), 2425-2427 (2002).Google Scholar
9. Arici, E., Sariciftci, N. S. and Meissner, D., Advanced Functional Materials 13 (2), 165171 (2003).Google Scholar
10. Xin, H., Kim, F. S. and Jenekhe, S. A., Journal of the American Chemical Society 130 (16), 5424+ (2008).Google Scholar
11. Kolachure, V. and Jin, M. H. C., presented at the Photovoltaic Specialists Conference, 2008. PVSC ’08. 33rd IEEE, 2008 (unpublished).Google Scholar
12. Steckl, A. J., Nature Photonics 1 (1), 35 (2007).Google Scholar
13. Schaeffer, J. K., Fonseca, L. R. C., Samavedam, S. B., Liang, Y., Tobin, P. J. and White, B. E., Applied Physics Letters 85 (10), 18261828 (2004).Google Scholar
14. Kim, Y., Choi, D., Moon, B., Oh, E., Lim, H., Kwon, S. and Ha, C. S., Advanced Engineering Materials 7 (11), 10231027 (2005).Google Scholar
15. Hashimoto, Y. and Hamagaki, M., Electr Eng Jpn 154 (4), 17 (2006).Google Scholar
16. Brabec, C. J., Shaheen, S. E., Winder, C., Sariciftci, N. S. and Denk, P., Applied Physics Letters 80 (7), 12881290 (2002).Google Scholar
17. Wang, X., Pandey, R. R., Singh, K. V., Andavan, G. T. S., Tsai, C., Lake, R., Ozkan, M. and Ozkan, C. S., Nanotechnology 17 (5), 11771183 (2006).Google Scholar
18. Chaudhary, S., Lu, H. W., Muller, A. M., Bardeen, C. J. and Ozkan, M., Nano Lett 7 (7), 19731979 (2007).Google Scholar
19. Chaudhary, S., Kim, J. H., Singh, K. V. and Ozkan, M., Nano Lett 4 (12), 24152419 (2004).Google Scholar
20. Kwon, Y. W., Lee, C. H., Choi, D. H. and Jin, J. I., J Mater Chem 19 (10), 13531380 (2009).Google Scholar
21. Benedetti, M., Ducani, C., Migoni, D., Antonucci, D., Vecchio, V. M., Romano, A., Verri, T. and Fanizzi, F. P., Possible Incorporation of Free N7-Platinated Guanines in DNA by DNA Polymerases, Relevance for the Cisplatin Mechanism of Action. (Humana Press Inc, 2009).Google Scholar
22. Johnson, R. C., Li, J. T., Hupp, J. T. and Schatz, G. C., Chemical Physics Letters 356 (5-6), 534540 (2002).Google Scholar
23. Dennler, G. and Sariciftci, N. S., Proceedings of the Ieee 93 (8), 14291439 (2005).Google Scholar
24. Miller, A. J., Hatton, R. A. and Silva, S. R. P., Applied Physics Letters 89 (13), - (2006).Google Scholar