Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:36:14.587Z Has data issue: false hasContentIssue false

Band Edge Optical Absorption of Molecular Beam Epitaxial GaSb Grown on Semi-Insulating GaAs Substrate

Published online by Cambridge University Press:  22 February 2011

M. Shah
Affiliation:
Air Force Institute of Physics, AFIT/CTRD, Wright-Patterson AFB, OH 45433
M.O. Manasreh
Affiliation:
Wright Laboratory, Wright-Patterson Air Force Base, Ohio 45433
R. Kaspi
Affiliation:
Wright Laboratory, Wright-Patterson Air Force Base, Ohio 45433
M. Y. Yen
Affiliation:
Wright Laboratory, Wright-Patterson Air Force Base, Ohio 45433
B. A. Philips
Affiliation:
Materilas Engineering Department, Carnegie-Mellon University, Pittsburgh, PA 15213
M. Skowronski
Affiliation:
Materilas Engineering Department, Carnegie-Mellon University, Pittsburgh, PA 15213
J. Shinar
Affiliation:
Ames Laboratory and Physcis laboratory, Iowa State University, Ames, IA 50011
Get access

Abstract

The optical absorption of the band edge of GaSb layers grown on semi-insulating GaAs substrates by the molecular beam epitaxy (MBE) technique is studied as a function of temperature. A free exciton absorption peak at 0.807 eV was observed at 10 K. The free exciton line is observed in either thick samples (5μm thick) or samples with ∼0.1 μm thick AlSb buffer layers. The latter samples suggest that the AlSb buffer layer is very effective in preventing some of the dislocations from propagating into the MBE GaSb layers. The fitting of the band gap of the GaSb layers as a function of temperature gives a Debye temperature different than that of the bulk GaSb calculated from the elastic constants.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mailhiot, C. in Semiconductor Ouantum Wells and Suverlattices for Long Wavelenath Infrared Detector, edited by Manasreh, M. O. (Artech House, Boston, 1993), chapt. 3. pp. 109138.Google Scholar
2. Miles, R. H., Chow, D. H., Schulman, J. N., and McGill, T. C., Appl. Phys. Lett. 57, 801 (1990).CrossRefGoogle Scholar
3. Johnson, E.J. and Fan, H. Y., Phys. Rev. A 139, 1991 (1965).CrossRefGoogle Scholar
4. Gotoh, H., Sasamoto, K., Kuroda, S., and Kimata, M., Phys. Stat. Sol. (a) 75, 641 (1983).CrossRefGoogle Scholar
5. Blakemore, J. S., J. Appl. Phys. 53, R123 (1982) and references therein.CrossRefGoogle Scholar
6. Ivanov, S. V. et al. , Semicond. Sci. Technol. 8, 347 (1993).CrossRefGoogle Scholar
7. Fox, A.M., Maciel, A.C., Ryan, J.F., and Kerr, T., Appl. Phys. Lett. 51, 430, (1987).CrossRefGoogle Scholar
8. Casey, H. C., in Atomic Diffusion in Semiconductors, edited by Shaw, D., (Plenum Press, New York, 1973), chapt.6, pp 351431 CrossRefGoogle Scholar
9. Varshni, Y. P., Physica 34, 149 (1967).CrossRefGoogle Scholar
10. Marcus, P. M. and Kennedy, A. J., Phys. Rev. 114, 459 (1959).CrossRefGoogle Scholar
11. Steigmeier, E. F., Appl. Phys. Lett. 3, 6 (1963).CrossRefGoogle Scholar
12. Chidley, E. T. R., Haywood, S. K., Henriques, A. B., Mason, N. J., Nicholas, R. J., and Walker, P. J., Semicond. Sci. Technol. 6, 45 (1991).CrossRefGoogle Scholar
13. Chen, S. C. and Su, Y. K., J. Appl. Phys. 66, 350, (1989).CrossRefGoogle Scholar