Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:55:44.405Z Has data issue: false hasContentIssue false

Atom-Probe Study of Selective Oxidation of Ni from Cu-Ni Alloy

Published online by Cambridge University Press:  21 February 2011

K. Hono
Affiliation:
Department of Materials Science & Engineering, The Pennsylvania State University, University Park, PA 16802
M. Nakamura
Affiliation:
Department of Materials Science & Engineering, The Pennsylvania State University, University Park, PA 16802
H. W. Pickering
Affiliation:
Department of Materials Science & Engineering, The Pennsylvania State University, University Park, PA 16802
T. Sakurai
Affiliation:
The Institute for Solid State Physics, The University of Tokyo, Roppongi, Minato-ku, Tokyo 106, Japan
Get access

Abstract

The initial oxidation stages of Cu-Ni alloys have been studied by atom-probe field ion microscopy (APFIM). Oxide layers were formed in-situ in the FIM chamber on the clean alloy surfaces. The Cu-Ni alloys were oxidized in-situ at 1×10−4 Torr O2 at 970 K for less than 1 min. The atom-probe analysis of the {111} and {100} surfaces of the oxidized alloys showed that the oxide was comprised of NiO. The concentration change at the oxide/metal interface was also analyzed by the atom-probe.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baer, D. R. and Dake, L. S., in Oxidation of Metals and Associated Mass Transport. Edited by Dayananda, M. A., Rothman, S. J., and King, W. E. (Metallurgical Soc. Inc., Warrendale, PA., 1987) pp. 185216.Google Scholar
2. Wandelt, K., Surf. Sci. Rep., 2, 1 (1982).CrossRefGoogle Scholar
3. Conner, G. R., in Applied Surface Analysis. edited by Barr, T. L. and Davis, L. E. (ASTM, Philadelphia, PA., 1980) pp. 5465.CrossRefGoogle Scholar
4. Ng, Y. S., McLane, S. B., and Tsong, T. T., J. Appl. Phys., 49, 2517 (1978).CrossRefGoogle Scholar
5. Cranstoun, G. K. L., Pyke, D. R., and Smith, G. D. W., Appl. Surf. Sci., 2 375 (1979).CrossRefGoogle Scholar
6. Kellogg, G. L., J. Catalysis, 92, 167 (1985).CrossRefGoogle Scholar
7. Adachi, T., Tomiya, M., Kuroda, T., and Nakamura, S., J. de Physique (C), 47. C7315 (1986).Google Scholar
8. Vauer, G. and Leishch, M., J. de Physique (C), 47, C7189 (1986).Google Scholar
9. Ling, D. T., Lindau, I., Miller, J. N., and Spicer, W.E, in Applied Surface Analysis, edited by Barr, T. L. and Davis, L. E. (ASTM, Philadelphia, PA, 1980) pp. 6680.CrossRefGoogle Scholar
10. Helms, C. R., in Interfacial Se'egration. edited by Johnson, W. C. and Blakely, J. M. (ASM, Metals Park, OH, 1979) pp. 175190.Google Scholar
11. Castle, J. E., Nature; Phys. Sci., 234, 93 (1971).CrossRefGoogle Scholar
12. Castle, J. E. and Nasserian-Riabi, , Corr. Sci., 15, 537 (1975).CrossRefGoogle Scholar
13. Whittle, D. P. and Wood, G. C., J. Inst. Met., 96, 115 (1968).Google Scholar
14. Whittle, D. P. and Wood, G. C., Corr. Sci., 8, 295 (1968).CrossRefGoogle Scholar
15. Takasu, Y., Matsuda, Y., Maru, S., Hayashi, N., Yoneyama, H. and Tamura, H., J. Phys. Chem., 79. 1480 (1975).CrossRefGoogle Scholar
16. Takasu, Y., Shimizu, H., Maru, S. and Matsuda, Y., Surf. Sci., 61, 279 (1976).CrossRefGoogle Scholar
17. Takasu, Y., Takagi, M., and Matsuda, Y., Berichte der Bunsen-Gesellschaft, 81, 870 (1977).CrossRefGoogle Scholar
18. Ertl, G. and Kuppers, J., Surf. Sci., 24. 104 (1971).CrossRefGoogle Scholar
19. Benndorf, C., Klatte, G., and Thieme, F., Surf. Sci., 152. 399 (1985).Google Scholar
20. Wagner, C., J. Electrochemical Society, 103, 571 (1956).CrossRefGoogle Scholar
21. Hono, K., Iwata, T., Pickering, H. W., and Sakurai, T., Surf. Sci., in press.Google Scholar
22. Hono, K., Iwata, T., Nakamura, M., Pickering, H. W. and Sakurai, T., J. de Physique (C), in press.Google Scholar
23. Hono, K., Pickering, H. W., and Sakurai, T., Appl. Surf. Sci., in press.Google Scholar
24. Hono, K., Pickering, H. W., Hashizume, T., Kamiya, I. and Sakurai, T., Surf. Sci., in press.Google Scholar
25. Sakurai, T., Hashizume, T., Kobayashi, A., Sakai, A., Hyodo, S., Kuk, Y., and Pickering, H. W., Phys. Rev. B, 34, 8379 (1986).CrossRefGoogle Scholar
26. Al-Saleh, K., Ph.D. Thesis, The Pennsylvania State University, 1983.Google Scholar
27. Hess, D. R., Ph.D. Thesis, The Pennsylvania State University, 1986.Google Scholar
28. Hickman, J. W. and Gulbransen, E. A., Trans. Metall. Soc., AIME, M 180, 534 (1948).Google Scholar
29. Heinemann, K., Rao, D. B. and Douglass, D. L., Oxid. Met., 11. 321 (1977).CrossRefGoogle Scholar
30. Kubaschewski, O. and Alcock, C. B., Metallurgcal Thermochemistry, 5th ed. (Pergamon Press, Oxford, 1979)Google Scholar
31. Wagner, C., Corr. Sci, 5, 751 (1965); Z. Elektrochemie, 3, 772 (1959).CrossRefGoogle Scholar
32. Harrison, J. D. and Wagner, C., Acta Metall., 7, 722 (1959).CrossRefGoogle Scholar
33. Kim, Y. S. and Pickering, H. W., Metall. Trans. B, 13B, 349 (1982).CrossRefGoogle Scholar
34. Pickering, H. W., Corr. Sci., 23 1107 (1983); H. W. Pickering, Corr. Sci., 22. 621 (1982).CrossRefGoogle Scholar