Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:35:07.708Z Has data issue: false hasContentIssue false

Atomistic Simulations of Cross-Slip Processes in Model FCC Structures and L10 TiAl

Published online by Cambridge University Press:  10 February 2011

S. Rao*
Affiliation:
Materials Directorate, Wright Laboratory, WL/MLLM, Wright-Patterson AFB, OH 45433 UES Inc, 4401 Dayton-Xenia Rd, Dayton, OH 45432
Get access

Abstract

Three dimensional (3D) cross-slipped core structures of a/2[110] screw dislocations in model FCC structures are simulated using lattice statics within the Embedded Atom Method (EAM) formalism using potentials fitted to the elastic and structural properties of FCC Ni as well as L10TiAl. 2 and 3-D Green's function (GF) techniques are used to relax the boundary forces in the simulations. The core structure of the constrictions are diffuse. At large separation distances between Shockley partials in the unconstricted configuration, the two constrictions formed by cross-slip onto a cross {111} plane have significantly different energy profiles suggesting that self-stress forces dominate the energetics of the cross-slip process. The variation in cross-slip energy with stacking-fault energy is in reasonable agreement with continuum predictions, excepting at high fault energy values as in L10TiAl. Cross-slip energies estimated for Cu, Ni and γ-TiAl from these calculations show reasonable agreement with experimental data. The cross-slip energy shows a significantly weaker dependence on Escaig stress as compared to elasticity calculations, with the activation volume for the cross-slip process being approximately 20b3 at an applied Escaig stress of 10-3μ in Cu.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jackson, P.J., 1985, Prog.Mater.Sci., 29, 139.Google Scholar
2 Paidar, V., Pope, D.P., and Vitek, V., 1984, Acta metall., 30, 435.Google Scholar
3 Couret, A., and Caillard, D., 1988, Acta.metall., 36, 215.Google Scholar
4 Greenberg, B.A., Antonova, O.V., Indenbaum, V.N., Karkina, L.I., Notkin, A.B., Ponomarev, M.V., and Smirnov, L.V., 1991, Acta.metall.mater., 39, 233.Google Scholar
5 Dimiduk, D.M., 1991, J.Physique III, 1, 1025.Google Scholar
6 Louchet, F., and Viguier, B., 1995, Phil.Mag. A, 71, 1313.Google Scholar
7 Shi, X., Pollock, T., Mahajan, S., and Arunachalam, V.S., 1997, Mat. Res.Soc.Symp.Proc., 460, 493.Google Scholar
8 Sriram, S., Dimiduk, D.M., Hazzledine, P.M., and Vasudevan, K., 1997, Phil.Mag.A, 76, 965.Google Scholar
9 Humphreys, F.J., and Hirsch, P.B., 1970, Proc.Royal.Soc.A, 318, 73.Google Scholar
10 Schoeck, G., and Seeger, A, 1955, Defects in crystalline solids, Phys.Soc. London, 340.Google Scholar
11 Fleischer, R.L., 1959, Acta.metall., 7, 134.Google Scholar
12 Escaig, B., 1968, Proc.Battelle.Colloq. Dislocation Dynamics, edited by Rosenfield, A.R., Hahn, G.T., Bement, A.L. Jr and Jaffee, R.I. (New York: McGraw Hill), p655.Google Scholar
13 Duesbery, M., Louat, N.P. and Sadananda, K., 1991, Acta.metall.mater., 40, 149.Google Scholar
14 Rao, S.I., Parthasarathy, T.A., and Woodward, C., 1998b, accepted for publication in Phil.Mag.A.Google Scholar
15 Friedel, J., 1957, Dislocations and Mechanical Properties of Crystals (Wiley: New York), p330.Google Scholar
16 Stroh, A.N., 1954, Proc.Phys.Soc.B, 67, 427.Google Scholar
17 Bonneville, J., and Escaig, B., 1979, Acta metall., 27, 1477.Google Scholar
18 Puschl, W., 1990, Phys.stat.sol.b, 162, 363.Google Scholar
19 Puschl, W., and Schoeck, G., 1993, Mat.Sci. and Eng.A, 164, 286.Google Scholar
20 Saada, G., 1991, Mat.Sci. and Eng.A, 137, 177.Google Scholar
21 Kubin, L.P., Canova, G., Condat, M., Devincre, B., Pontikis, V., and Brechet, Y., 1992, Solid state phenomenon, 23–24, 455.Google Scholar
22 Mills, M.J., and Chrzan, D.C., 1992, Acta metall., 40, 3051.Google Scholar
23 Devincre, B., Veyssiere, P., Kubin, L.P., and Saada, G., 1997, Phil.Mag. A, 75, 1263.Google Scholar
24 Devincre, B., and Kubin, L.P., 1994, Modelling Simul.Mater.Sci.Eng., 2, 559.Google Scholar
25 Tang, M., Kubin, L.P., and Canova, G.R., 1998, Acta Mater., 46, 3221.Google Scholar
26 Rasmussen, T., Jacobsen, K.W., Leffers, T., and Pedersen, O.B., 1997, Phys.Rev.B, 56(6), 2977.Google Scholar
27 Rasmussen, T., Jacobsen, K.W., Leffers, T., and Pedersen, O.B., 1997, Mat.Sci and Eng. A, 234–236, 544.Google Scholar
28 Duesbery, M.S., 1983, Acta metall., 31, No.10, 1747.Google Scholar
29 Parthasarathy, T.A., Dimiduk, D., and Saada, G., 1993, Mat.Res.Soc.Symp.Proc., 288, 311.Google Scholar
30 Bulatov, V.V., Yip, S., and Argon, A.S., 1995, Phil.Mag.A, 72, 1995.Google Scholar
31 Parthasarathy, T.A., and Dimiduk, D, 1996, Acta Mater., 44, 2237.Google Scholar
32 Rao, S.I., Hemandez, C., Simmons, J.P., Parthasarathy, T.A., and Woodward, C., 1998a, Phil.Mag.A, 77, No.1, 231.Google Scholar
33 Simmons, J.P., Rao, S.I., and Dimiduk, D, 1998, accepted for publication in Phil.Mag.letters.Google Scholar
34 Daw, M.S., and Baskes, M.I., 1984, Phys.Rev. B., 29, 6443.Google Scholar
35 Finnis, M.W., and Sinclair, J.E., 1984, Phil.Mag.A, 50, 45.Google Scholar
36 Voter, A.F., and Chen, S.P., 1987, Mater.Res.Soc.Symp.Proc., 82, 175.Google Scholar
37 Rao, S.I., Parthasarathy, T.A., and Woodward, C., 1991, Mat.Res.Soc.Symp.Proc., 213, 125.Google Scholar
38 Simmons, J.P., Rao, S.I., and Dimiduk, D, 1997, Phil.Mag.A, 75, 1299.Google Scholar
39 Hirth, J.P., and Lothe, J., 1982, Theory of dislocations, second edition (New York: John Wiley and Sons).Google Scholar
40 Stroh, A.N., 1958, Phil.Mag, 3, 625.Google Scholar
41 Vitek, V., 1974, Cryst.Lattice.Defects, 5, 1.Google Scholar
42 Carter, C.B., and Holmes, S.M., 1977, Phil.Mag.A, 35, 1161.Google Scholar
43 Clement, P.N., and Coulomb, P., 1974, PhilMag., 30, 363.Google Scholar
44 Stobbs, W.M., and Sworn, C.H., 1971, Phil.Mag., 24, No.2, 1365.Google Scholar
45 Bonneville, J., Escaig, B., and Martin, J.L., 1988, Acta.Metall., 36, 1989.Google Scholar
46 Hull, D., and Bacon, D.J., 1984, Introduction to dislocations, third edition (Pergamon).Google Scholar