Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:47:41.139Z Has data issue: false hasContentIssue false

The Atomistic Nature of Compound Semiconductor Interfaces and the Role of Growth Interruption

Published online by Cambridge University Press:  26 February 2011

Anupan Madhukar*
Affiliation:
Department of Materials Science and Department of Physics, University of Southern California, Los Angeles, CA 90089–0241
Get access

Abstract

An overview of the current understanding of the structural and chemical nature of interfaces involving an alloy layer, as revealed in photoluminescence and excitation spectra, is presented. Systematic studies, including reflection-highenergy- electron-diffraction measurements and computer simulations, reveal in-plane fluctuations in the alloy composition arising from the growth kinetics to be the dominant feature controlling the nature of the confining potentials in high quality samples grown without growth interruption. The role of surface kinetics in relaxing dynamic growth fronts to structurally smoother surfaces upon growth interruption is summarized and its pragmatic consequences for improving interface quality discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See these proceedings.Google Scholar
2.Wood, C.E.C., Surf. Sc. 108, L441 (1981).Google Scholar
3.Larsen, P.K., Dobson, P.J., Neave, J.H., Joyce, B.A., Bolger, B. and Zhang, J., Surf. Sc. 169, 176 (1986) and references therein.Google Scholar
4.Van Hove, J.M., Lent, C.S., Pukite, P.R. and Cohen, P.I., Jour. Vac. Sc. Tech. B3, 564(1984) and references therein.Google Scholar
5.Lewis, B. F., Fernandez, R.F., Madhukar, A. and Grunthaner, F.J., J. Vac. Sci. Technol. B4, 560 (1986) and references therein.Google Scholar
6.Chen, P., Kim, J.Y., Madhukar, A. and Cho, N.M., J. Vac. Sci. Tech. B4, 890 (1986) and references therein.Google Scholar
7.Saka-moto, T., Funabashi, H., Ohta, K., Nakagawa, T., Kawai, N.J., Kojima, T. and Bando, Y., Superlattices and Microstructures, 1, 347 (1985).Google Scholar
8.Madhukar, A., Lee, T.C., Yen, M.Y., Chen, P., Kim, J.Y., Ghaisas, S.V. and Newman, P.G., App. Phys. Lett. 46, 1148 (1985).Google Scholar
9.Yen, M.Y., Lee, T.C., Chen, P. and Madhukar, A., J. Vac. Sci.Technol. B4, 590 (1986); M.Y. Yen, Ph. D. Disseratation, Univ. of Southern California (1986).Google Scholar
10.Lee, T.C., Yen, M.Y., Chen, P. and Madhukar, A., Tech. A 4, 884 (1986); Surf. Sc. 174, 55 (1986); T.C. Lee, Ph.D. Dissertation, Univ. of Southern California (1986).Google Scholar
11.Ghaisas, S. V. and Madhukar, A., Jour. Vac. Sc. Tech. B3, 540 (1985); Phys. Rev. Letts. 56, 1066 (1986).Google Scholar
12.Madhukar, A. and Ghaisas, S.V., Appl. Phys. Letts. 47, 247 (1985).Google Scholar
13.Ogale, S.B., Thomsen, M. and Madhukar, A., Mat. Res. Soc. Symp. Proceedings, Vol.94, p.83 (1987).Google Scholar
14.Ogale, S.B., Thomsen, M. and Madhukar, A., Appl. Phys. Lett. (To appear).Google Scholar
15.Madhukar, A., Chen, P. and Ogale, S.B., Proceedings of the Asia Pacific Symposium on Surface Physics, (Fudan University, Shanghai, China, April 14–17, 1987), Ed. Xie, Xide (World Scientific Press, Singapore, 1987) p.98.Google Scholar
16.Thomsen, M., Ghaisas, S.V. and Madhukar, A., J. Cryst. Growth 84, 79 (1987).Google Scholar
17.Thomsen, M. and Madhukar, A., J. Cryst. Growth 84, 98 (1987).Google Scholar
18.Voillot, F., Madhukar, A., Kim, J.Y., Chen, P., Cho, N.M., Tang, W.C. and Newman, P.G., App. Phys. Letts. 48, 1009 (1986).Google Scholar
19.Voillot, F., Madhukar, A., Tang, W.C., Thomsen, M., Kim, J.Y. and Chen, P., App. Phys. Letts. 50, 194 (1987).Google Scholar
20.Kim, J.Y., Chen, P., Voillot, F. and Madhukar, A., AppI. Phys. Lett., 50, 739 (1987); Ph.D. Disseratation, Univ. of Southern California (1987).Google Scholar
21.Voillot, F., Kim, J.Y., Tang, W.C., Madhukar, A. and Chen, P., Superlattices and Microstructures, 3, 313 (1987).Google Scholar
22.Ogale, S.B., Madhukar, A., Voillot, F., Thomsen, M., Tang, W.C., Lee, T.C., Kim, J.Y. and Chen, P., Phys. Rev. B36, 1662 (1987).Google Scholar
23.Madhukar, A. and Ghaisas, S.V., CRC Critical Reviews in Solid State and Materials Sciences, Vol 41. (In Press).Google Scholar
24.Grunthaner, F. J., Yen, M. Y., Madhukar, A., Fernandez, R., Lee, T.C. and Lewis, B.F., paper presented at the ist Superlattice and Microstructure Conference (Urbana, Illinois, Aug. 1984) and App. Phys. Letts. 46, 983 (1985).Google Scholar
25.Weisbuch, C., Miller, R.C., Dingle, R., Gossard, A.C. and Weigmann, W., Solid State Comm. 38, 709 (1981).Google Scholar
26.Sakaki, H., Tanaka, M. and Y-oshino, J., Jpn. Jour. App. Phys. 24, L417 (1985).Google Scholar
27.Fukunaga, T., Kobayashi, K.L. and Nakashima, H., Jpn. Jour. App. Phys. 24, L510 (1985).Google Scholar
28.Bimberg, D., Mars, D., Miller, J. N., Bauer, R. and Oertl, D., Jour. Vac. Sc. Tech. B4, 1014 (1986).Google Scholar
29.Takamori, A., Miyauchi, E., Arimoto, H., Bamba, Y., Morita, T. and Hashimoto, H., Jpn. Jour. App. Phys. 24, L414 (1985).Google Scholar
30.Cho, N.M., Chen, P. and Madhukar, A., App. Phys. Lett. 50, 1909 (1987).Google Scholar
31.Cho, N.M., Kim, D.J. and Madhukar, A., (Unpublished).Google Scholar
32.Madhukar, A., Newman, P.G., Cho, N.M., Kim, D.J., Smith, D.B. and Aucoin, T., (Unpublished).Google Scholar