Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T07:18:09.335Z Has data issue: false hasContentIssue false

Atomistic Modeling of Shock Loading in SiC Ceramics

Published online by Cambridge University Press:  05 April 2013

Paulo S. Branicio
Affiliation:
Institute of High Performance Computing, Agency for Science, Technology and Research 1 Fusionopolis Way, 16-16 Connexis 138622, Singapore.
Jingyun Zhang
Affiliation:
Institute of High Performance Computing, Agency for Science, Technology and Research 1 Fusionopolis Way, 16-16 Connexis 138622, Singapore.
Get access

Abstract

Large scale molecular-dynamics simulations of plane shock loading in SiC are performed to reveal the interplay between shock-induced compaction, structural phase transformation (SPT) and plastic deformation. The shock profile is calculated for a wide range of particle velocity from 0.1 km/s to 6.0 km/s. Single crystalline models indicate no induced plasticity or SPT for shock loading below 2.0 km/s. For intermediate particle velocity, between 2.0 km/s and 4.5 km/s the generated shock wave splits into an elastic precursor and a zinc blende to rocksalt structural transformation wave. That is induced by the increase in shock pressure to over 90 GPa and results in a steep increase of density from 3.21 g/cm3 to ∼4.65 g/cm3. For particle velocity greater than 4.5 km/s a single overdriven transformation shock wave is generated. These simulation results provide an atomistic view of the dynamic effects of shock impact on single crystal high-strength ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Holian, B. L. and Lomdahl, P. S., Science 280, 2085 (1998).CrossRefGoogle Scholar
Kadau, K., Germann, T. C., Lomdahl, P. S., and Holian, B. L., Science 296, 1681 (2002).CrossRefGoogle Scholar
Bourne, N., Millett, J., and Pickup, I., J. Appl. Phys. 81, 6019 (1997).CrossRefGoogle Scholar
, J. Millett, C. F., Bourne, N. K., and Dandekar, D. P., J. Appl. Phys. 97, 113513 (2005).CrossRefGoogle Scholar
Sekine, T. and Kobayashi, T., Phys. Rev. B 55, 8034 (1997).CrossRefGoogle Scholar
Vogler, T. J. and Chhabildas, L. C., Int. J. Impact Eng. 33, 812 (2006).CrossRefGoogle Scholar
Vashishta, P., Kalia, R. K., Nakano, A., and Rino, J. P., J. Appl. Phys. 101, 103515 (2007).CrossRefGoogle Scholar
Tsuzuki, H., Rino, J. P., and Branicio, P. S., J. Phys. D Appl. Phys. 44, 055405 (2011).CrossRefGoogle Scholar
Branicio, P. S., Kalia, R. K., Nakano, A., and Vashishta, P., Appl. Phys. Lett. 97, 111903 (2010).CrossRefGoogle Scholar
Kikuchi, H., Kalia, R. K., Nakano, A., Vashishta, P., Branicio, P. S., and Shimojo, F., J. Appl. Phys. 98, 103524 (2005).CrossRefGoogle Scholar
Yoshida, M., Onodera, A., Ueno, M., Takemura, K., and Shimomura, O., Phys. Rev. B 48, 10587 (1993).CrossRefGoogle Scholar