Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T18:02:11.364Z Has data issue: false hasContentIssue false

Atomistic Analysis of the Role of Silicon Interstitials in Boron Cluster Dissolution

Published online by Cambridge University Press:  17 March 2011

Maria Aboy
Affiliation:
Dpto. de Electrónica, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
Lourdes Pelaz
Affiliation:
Dpto. de Electrónica, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
Luis A. Marqués
Affiliation:
Dpto. de Electrónica, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
Pedro López
Affiliation:
Dpto. de Electrónica, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
Juan Barbolla
Affiliation:
Dpto. de Electrónica, Universidad de Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain
Get access

Abstract

Boron implantation into preamorphized Si, followed by low temperature solid phase epitaxial (SPE) regrowth produces high activation combined with low diffusion. However, in the presence of high B concentrations, the activation obtained after the SPE regrowth only can reach concentrations in the order of a few times 1020 cm−3, and even more deactivation occurs during additional annealing. We have analyzed the role of the Si interstitials injected from the end of range (EOR) damage in B deactivation and reactivation by atomistic simulations. We have shown that the B cluster evolution can be clearly correlated to the evolution of Si interstitial defects at EOR. This is also compatible with B cluster stabilization in the presence of excess Si interstitials, observed in oxidation experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Eaglesham, D. J., Stolk, P. A., Gossmann, H.-J., and Poate, J. M., Appl. Phys. Lett. 65, 2305 (1994).Google Scholar
2. Cowern, N. E. B., Janssen, K. T. F., and Jos, H. F. F., J. Appl. Phys. 68, 6191 (1990).Google Scholar
3. Pelaz, L., Venezia, V. C., Gossmann, H.-J., Gilmer, G. H., Fiory, A. T., Rafferty, C. S., Jaraiz, M., and Barbolla, J., Appl. Phys. Lett. 75, 662 (1999).Google Scholar
4. Aboy, M., Pelaz, L., Marqués, L. A., Barbolla, J., Mokhberi, A., Takamura, Y., Griffin, P. B. and Plummer, J. D., Appl. Phys. Lett. 83, 4166 (2003).Google Scholar
5. Landi, E., Armigliato, A., Solmi, S., Köghler, R., and Wieser, E., Appl. Phys. A 47, 359 (1998).Google Scholar
6. Mokhberi, A., Pelaz, L., Aboy, M., Marques, L., Barbolla, J., Griffin, P., Plummer, J. D., Paton, E., McCoy, S., Ross, J., Elliot, K. and Gelpi, J., IEMD Procedings 2002.Google Scholar
7. Jin, J.-Y., Liu, J., Jeong, U., Mehta, S., and Jones, K., J. Vac. Sci. Technol. B 20, 422 (2002).Google Scholar
8. Pawlak, B. J., Surdeanu, R., Colombeau, B., Smith, A. J., Cowern, N. E. B., Lindsay, R., Vandervorst, W., Brijs, B., Richard, O., and Cristiano, F., Appl. Phys. Lett. 84, 2055 (2004).Google Scholar
9. Solmi, S., Mancini, L., Milita, S., Servidore, M., Mannino, G., and Bersani, M., Appl. Phys. Lett. 79, 1103 (2001).Google Scholar
10. Jaraiz, M., Pelaz, L., Rubio, J. E., Barbolla, J., Gilmer, G. H., Eaglesham, D. J., Gossmann, H.-J., and Poate, J. M., Mater. Res. Soc. Symp. Proc. 532, 43 (1998).Google Scholar
11. Windl, W., Bunea, M. M., Stumpf, R., Dunham, S. T., and Masquelier, M. P., Phys. Rev. Lett. 83, 4345 (1999).Google Scholar
12. Caturla, M. J., Johnson, M. D., and Rubia, T. Diaz de la, Appl. Phys. Lett. 72, 2736 (1998).Google Scholar
13. Pelaz, L., Marqués, L. A., Aboy, M., and Barbolla, J., Appl. Phys. Lett. 82, 2038 (2003).Google Scholar
14. Mattoni, A. and Colombo, L., Phys. Rev. B 69, 045204 (2004).Google Scholar
15. Duffy, R. (to be published).Google Scholar
16. Duffy, R., Venezia, V. C., Heringa, A., Hüsken, T. W. T., Hopstaken, M. J. P., Cowern, N. E. B., Griffin, P. B., and Wang, C. C., Appl. Phys. Lett. 82, 3647 (2003).Google Scholar
17. Lampin, E., Cristiano, F., Lamrani, Y., Claverie, A., Colombeau, B., and Cowern, N. E. B., J. Appl. Phys. 94, 7520 (2003).Google Scholar
18. Aboy, M., Pelaz, L., Marqués, L. A., Enrìquez, L. and Barbolla, J., J. Appl. Phys. 94, 1010 (2003).Google Scholar
19. Radic, L., Lilak, A. D., and Law, M., Appl. Phys. Lett. 81, 826 (2002).Google Scholar