No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
A comprehensive computational analysis is presented of the atomistic mechanisms of strain relaxation over a wide range of applied biaxial tensile strain in free-standing Cu thin films. The analysis is based on large-scale isothermal-isostrain MD simulations using slab supercells with cylindrical voids normal to the film plane and extending throughout the film thickness. Our analysis has revealed various regimes in the film's mechanical response as the applied strain level increases. Following an elastic response at low strain (≶ 2%), plastic deformation occurs accompanied by emission of screw dislocations from the void surface and threading dislocations from the film surfaces, in parallel with generation of vacancies due to slip of jogged dislocations. At the lower strain range following the elastic-to-plastic deformation transition (⋚ 6%), void growth is the major strain relaxation mechanism, while at higher levels of applied strain (≥ 8%), a subsequent transition leads to a new plastic deformation regime where void growth plays a negligible role in the film strain relaxation.