Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T02:51:12.820Z Has data issue: false hasContentIssue false

Atomically Resolved Imaging of Epitaxial CaF2 on Si(111) using Noncontact Atomic Force Microscope

Published online by Cambridge University Press:  01 February 2011

Yoshihide Seino
Affiliation:
Handai Frontier Research Center (FRC), Osaka University, 2–1 Yamada-oka, Suita, Osaka 565–0871, Japan
Masayuki Abe
Affiliation:
Handai Frontier Research Center (FRC), Osaka University, 2–1 Yamada-oka, Suita, Osaka 565–0871, Japan Graduate School of Engineering, Osaka University, 2–1 Yamada-oka, Suita, Osaka 565–0871, Japan
Seizo Morita
Affiliation:
Handai Frontier Research Center (FRC), Osaka University, 2–1 Yamada-oka, Suita, Osaka 565–0871, Japan Graduate School of Engineering, Osaka University, 2–1 Yamada-oka, Suita, Osaka 565–0871, Japan
Get access

Abstract

Epitaxial calcium fluoride (CaF2) film surfaces grown on Si(111) were imaged with the atomic force microscopy operated in the noncontact mode in ultrahigh vacuum. Our experimental results reproducibly reveal two kind of topographic patterns with the atomic scale contrast. The line profiles obtained from the topographic image exhibit that the change of tip-polarity plays the important role for obtaining two atomic corrugation patterns by considering the interaction between the tip and the two topmost surface atoms. It is similar to the results from the literature obtained on the cleaved CaF2 surface with both positively and negatively terminated tip.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binning, G., Rohrer, H., Gerber, C., and Weibel, E., Phys. Rev. Lett. 49, 57 (1982).Google Scholar
2. Binning, G., Quate, C. F., and Gerber, C., Phys. Rev. Lett. 56, 930 (1986).Google Scholar
3. For an overview see “Noncontact Atomic Force Microscopy”, ed. S. Morita, R. Weisendanger, and E. Meyer (Springer, New York, 2002).Google Scholar
4. Fukui, K., Onishi, H., and Iwasawa, Y., Phys. Rev. Lett. 79, 4202 (1997).Google Scholar
5. Bammerlin, M., Lüthi, R., meyer, E., Baratoff, A., , J., Guggisberg, M., Loppacher, C., Gerber, C., and Güntherodt, H.-J., Appl. Phys. Lett. A 66, 293 (1998).Google Scholar
6. Hoffmann, R., Kantorovich, L. N., Baratoff, A., Hug, H. J., and Güntherodt, H.-J., Phys. Rev. Lett. 92, 146103 (2004).Google Scholar
7. Barth, C. and Henry, C. R., Phys. Rev. Lett. 91, 196102 (2003).Google Scholar
8. Barth, C. and Reichling, M., Nature 414, 54 (2001).Google Scholar
9. Foster, A. S., Barth, C., Shluger, A. L., and Reichling, M., Phys. Rev. Lett. 86, 2373 (2001).Google Scholar
10. Foster, A. S., Shluger, A. L., and Nieminen, R. M., Appl. Surf. Sci. 188, 306 (2002).Google Scholar
11. Reichling, M. and Barth, C., Phys. Rev. Lett. 83, 768.Google Scholar
12. Barth, C. and Reichling, M., Surf. Sci. 470, L99 (2000).Google Scholar
13. Barth, C., Foster, A. S., Reichling, M., and Shluger, A. L., J. Phys.: Condens. Matter 13, 2061 (2001).Google Scholar
14. Klust, A., Ohta, T., Bostwick, A. A., Yu, Q., Ohuchi, F. S., and Olmstead, M., Phys. Rev. B 69, 035405 (2004).Google Scholar
15. Ishikawa, H. and Asano, T., Appl. Phys. Lett. 40, 66 (1982).Google Scholar
16. Albrecht, T. R., Grütter, P., Horne, D., and Rugar, D., J. Appl. Phys. 69, 668 (1991).Google Scholar
17. Foster, A. S., Gal, A. Y., Gale, J. D., Lee, Y. J., Nieminen, R. M., and Shluger, A. L., Phys. Rev. Lett. 92, 036101 (2004).Google Scholar