Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T09:24:25.409Z Has data issue: false hasContentIssue false

The Atomic Structure of the {1010} Inversion Domains in GaN/Sapphire Layers

Published online by Cambridge University Press:  10 February 2011

V. Potin
Affiliation:
Laboratoire d'Études et de Recherches sur les Matériaux, Unité associée CNRS 6004, Institut des Sciences de la Matière et du Rayonnement, 6 Blvd Maréchal Juin 14050 Caen Cedex, France.
P. Ruterana
Affiliation:
Laboratoire d'Études et de Recherches sur les Matériaux, Unité associée CNRS 6004, Institut des Sciences de la Matière et du Rayonnement, 6 Blvd Maréchal Juin 14050 Caen Cedex, France.
G. Nouet
Affiliation:
Laboratoire d'Études et de Recherches sur les Matériaux, Unité associée CNRS 6004, Institut des Sciences de la Matière et du Rayonnement, 6 Blvd Maréchal Juin 14050 Caen Cedex, France.
A. Salvador
Affiliation:
University of Illinois-Urbana, Coordinated Science Laboratory, Urbana, Illinois, IL61801, USA
H. Morkoç
Affiliation:
University of Illinois-Urbana, Coordinated Science Laboratory, Urbana, Illinois, IL61801, USA
Get access

Abstract

Nanometric inversion domains in GaN/Al2O3 layers have been investigated using HREM. They were found to be limited by {1010} planes and to cross the entire epitaxial layer. It has been possible, using extensive image simulation and matching to discriminate between possible atomic models for the boundary plane. It is shown that the inversion domain boundaries correspond to a Holt type model containing wrong bonds (Ga-Ga, N-N), and in that plane, each atom exhibits two such bonds. This probably can explain the small size of the domains (5–20 nm).

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, K., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
2. Ponce, F.A., Major, J.S. Jr, Plano, W.E. and Welch, D.F., Appl. Phys. Lett. 65, 2302 (1994).Google Scholar
3. Vermaut, P., Ruterana, P., Nouet, G. and Morkoç, H., Phil. Mag A 75, 239 (1997).Google Scholar
4. Liliental-Weber, Z., O'Keefe, M. A. and Washburn, J., Ultramicroscopy 30, 20 (1989).Google Scholar
5. Kim, J. C. and Goo, E., J. Am. Ceram. Soc. 73, 877 (1990).Google Scholar
6. Westwood, A. D and Notis, M. R., J. Am. Ceram. Soc. 74, 1226 (1991).Google Scholar
7. Rouvière, J. L., Arlery, M., Bourret, A., Niebuhr, R. and Bachern, K., in Proceeding of the IXth Conference on Microscopy of Semiconducting Materials, Inst. of Phys. Conf. Series No 146, (1995), p. 285.Google Scholar
8. Wu, X. U., Brown, L. M, Kapolnek, D., Keller, S., Keller, B., DenBaars, S.P. and Speck, J. S., J. Appl. Phys. 80, 3228 (1996).Google Scholar
9. Romano, L. T., Northrup, J. E. and O'Keefe, M.A., Appl. Phys. Lett. 69, 2394 (1996).Google Scholar
10. Holt, D. B., J. Phys Chem Solids 30, 1297 (1969)Google Scholar
11. Austerman, S.B. and Gehman, W.G., J. Mater. Sci. 1, 249 (1966).Google Scholar
12. Stadelmann, P. A., Ultramicroscopy 21, 131 (1987).Google Scholar
13. Lin, M.E., Sverdlov, B.N. and Morkoç, H., J. Appl. Phys. 74, 5038 (1993).Google Scholar
14. Serneels, R., Snykers, M., Delavignette, P., Gevers, R., and Amelinckx, S., Phys. Stat. Sol. B 58, 277(1973).Google Scholar